langchain.agents.agent.ExceptionTool

Note

ExceptionTool implements the standard Runnable Interface. 🏃

The Runnable Interface has additional methods that are available on runnables, such as with_types, with_retry, assign, bind, get_graph, and more.

class langchain.agents.agent.ExceptionTool[source]

Bases: BaseTool

Tool that just returns the query.

Initialize the tool.

param args_schema: Optional[TypeBaseModel] = None

Pydantic model class to validate and parse the tool’s input arguments.

Args schema should be either:

  • A subclass of pydantic.BaseModel.

or - A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2

param callback_manager: Optional[BaseCallbackManager] = None

Deprecated since version 0.1.7: Use callbacks instead.

Callback manager to add to the run trace.

param callbacks: Callbacks = None

Callbacks to be called during tool execution.

param description: str = 'Exception tool'

Description of the tool.

param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False

Handle the content of the ToolException thrown.

param handle_validation_error: Optional[Union[bool, str, Callable[[ValidationError], str]]] = False

Handle the content of the ValidationError thrown.

param metadata: Optional[Dict[str, Any]] = None

Optional metadata associated with the tool. Defaults to None. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

param response_format: Literal['content', 'content_and_artifact'] = 'content'

The tool response format. Defaults to ‘content’.

If “content” then the output of the tool is interpreted as the contents of a ToolMessage. If “content_and_artifact” then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage.

param return_direct: bool = False

Whether to return the tool’s output directly.

Setting this to True means that after the tool is called, the AgentExecutor will stop looping.

param tags: Optional[List[str]] = None

Optional list of tags associated with the tool. Defaults to None. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a tool with its use case.

param verbose: bool = False

Whether to log the tool’s progress.

__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) str

Deprecated since version langchain-core==0.1.47: Use invoke instead.

Make tool callable.

Parameters
Return type

str

async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters
  • inputs (List[Input]) – A list of inputs to the Runnable.

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

  • return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Returns

A list of outputs from the Runnable.

Return type

List[Output]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

Run ainvoke in parallel on a list of inputs, yielding results as they complete.

Parameters
  • inputs (Sequence[Input]) – A list of inputs to the Runnable.

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.

  • return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

A tuple of the index of the input and the output from the Runnable.

Return type

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async ainvoke(input: Union[str, Dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any) Any

Default implementation of ainvoke, calls invoke from a thread.

The default implementation allows usage of async code even if the Runnable did not implement a native async version of invoke.

Subclasses should override this method if they can run asynchronously.

Parameters
Return type

Any

async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, config: Optional[RunnableConfig] = None, tool_call_id: Optional[str] = None, **kwargs: Any) Any

Run the tool asynchronously.

Parameters
  • tool_input (Union[str, Dict]) – The input to the tool.

  • verbose (Optional[bool]) – Whether to log the tool’s progress. Defaults to None.

  • start_color (Optional[str]) – The color to use when starting the tool. Defaults to ‘green’.

  • color (Optional[str]) – The color to use when ending the tool. Defaults to ‘green’.

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to be called during tool execution. Defaults to None.

  • tags (Optional[List[str]]) – Optional list of tags associated with the tool. Defaults to None.

  • metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the tool. Defaults to None.

  • run_name (Optional[str]) – The name of the run. Defaults to None.

  • run_id (Optional[UUID]) – The id of the run. Defaults to None.

  • config (Optional[RunnableConfig]) – The configuration for the tool. Defaults to None.

  • tool_call_id (Optional[str]) – The id of the tool call. Defaults to None.

  • kwargs (Any) – Additional arguments to pass to the tool

Returns

The output of the tool.

Raises

ToolException – If an error occurs during tool execution.

Return type

Any

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

This API is in beta and may change in the future.

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters
  • args_schema (Optional[Type[BaseModel]]) – The schema for the tool. Defaults to None.

  • name (Optional[str]) – The name of the tool. Defaults to None.

  • description (Optional[str]) – The description of the tool. Defaults to None.

  • arg_types (Optional[Dict[str, Type]]) – A dictionary of argument names to types. Defaults to None.

Returns

A BaseTool instance.

Return type

BaseTool

Typed dict input:

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

New in version 0.2.14.

async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.

Parameters
  • input (Input) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

The output of the Runnable.

Return type

AsyncIterator[Output]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

This API is in beta and may change in the future.

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the

    format: on_[runnable_type]_(start|stream|end).

  • name: str - The name of the Runnable that generated the event.

  • run_id: str - randomly generated ID associated with the given execution of

    the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.

  • parent_ids: List[str] - The IDs of the parent runnables that

    generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.

  • tags: Optional[List[str]] - The tags of the Runnable that generated

    the event.

  • metadata: Optional[Dict[str, Any]] - The metadata of the Runnable

    that generated the event.

  • data: Dict[str, Any]

Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

ATTENTION This reference table is for the V2 version of the schema.

event

name

chunk

input

output

on_chat_model_start

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[model name]

AIMessageChunk(content=”hello”)

on_chat_model_end

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[model name]

{‘input’: ‘hello’}

on_llm_stream

[model name]

‘Hello’

on_llm_end

[model name]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[retriever name]

{“query”: “hello”}

on_retriever_end

[retriever name]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[template_name]

{“question”: “hello”}

on_prompt_end

[template_name]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute

Type

Description

name

str

A user defined name for the event.

data

Any

The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example:

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
Parameters
  • input (Any) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – The config to use for the Runnable.

  • version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.

  • include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.

  • include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.

  • include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.

  • exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.

  • exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.

  • exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.

  • kwargs (Any) – Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

Yields

An async stream of StreamEvents.

Raises

NotImplementedError – If the version is not v1 or v2.

Return type

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters
  • inputs (List[Input]) –

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

Return type

List[Output]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

Run invoke in parallel on a list of inputs, yielding results as they complete.

Parameters
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

Return type

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters
  • which (ConfigurableField) – The ConfigurableField instance that will be used to select the alternative.

  • default_key (str) – The default key to use if no alternative is selected. Defaults to “default”.

  • prefix_keys (bool) – Whether to prefix the keys with the ConfigurableField id. Defaults to False.

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – A dictionary of keys to Runnable instances or callables that return Runnable instances.

Returns

A new Runnable with the alternatives configured.

Return type

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – A dictionary of ConfigurableField instances to configure.

Returns

A new Runnable with the fields configured.

Return type

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
invoke(input: Union[str, Dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any) Any

Transform a single input into an output. Override to implement.

Parameters
  • input (Union[str, Dict, ToolCall]) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

  • kwargs (Any) –

Returns

The output of the Runnable.

Return type

Any

run(tool_input: Union[str, Dict[str, Any]], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, config: Optional[RunnableConfig] = None, tool_call_id: Optional[str] = None, **kwargs: Any) Any

Run the tool.

Parameters
  • tool_input (Union[str, Dict[str, Any]]) – The input to the tool.

  • verbose (Optional[bool]) – Whether to log the tool’s progress. Defaults to None.

  • start_color (Optional[str]) – The color to use when starting the tool. Defaults to ‘green’.

  • color (Optional[str]) – The color to use when ending the tool. Defaults to ‘green’.

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to be called during tool execution. Defaults to None.

  • tags (Optional[List[str]]) – Optional list of tags associated with the tool. Defaults to None.

  • metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the tool. Defaults to None.

  • run_name (Optional[str]) – The name of the run. Defaults to None.

  • run_id (Optional[UUID]) – The id of the run. Defaults to None.

  • config (Optional[RunnableConfig]) – The configuration for the tool. Defaults to None.

  • tool_call_id (Optional[str]) – The id of the tool call. Defaults to None.

  • kwargs (Any) – Additional arguments to pass to the tool

Returns

The output of the tool.

Raises

ToolException – If an error occurs during tool execution.

Return type

Any

stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.

Parameters
  • input (Input) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

The output of the Runnable.

Return type

Iterator[Output]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

Serialize the Runnable to JSON.

Returns

A JSON-serializable representation of the Runnable.

Return type

Union[SerializedConstructor, SerializedNotImplemented]

property args: dict
property is_single_input: bool

Whether the tool only accepts a single input.

property tool_call_schema: Type[BaseModel]