langchain_community.vectorstores.tencentvectordb
.TencentVectorDB¶
- class langchain_community.vectorstores.tencentvectordb.TencentVectorDB(embedding: ~langchain_core.embeddings.embeddings.Embeddings, connection_params: ~langchain_community.vectorstores.tencentvectordb.ConnectionParams, index_params: ~langchain_community.vectorstores.tencentvectordb.IndexParams = <langchain_community.vectorstores.tencentvectordb.IndexParams object>, database_name: str = 'LangChainDatabase', collection_name: str = 'LangChainCollection', drop_old: ~typing.Optional[bool] = False, collection_description: ~typing.Optional[str] = 'Collection for LangChain', meta_fields: ~typing.Optional[~typing.List[~langchain_community.vectorstores.tencentvectordb.MetaField]] = None, t_vdb_embedding: ~typing.Optional[str] = 'bge-base-zh')[source]¶
Tencent VectorDB as a vector store.
In order to use this you need to have a database instance. See the following documentation for details: https://cloud.tencent.com/document/product/1709/94951
Attributes
embeddings
Access the query embedding object if available.
field_id
field_metadata
field_text
field_vector
Methods
__init__
(embedding, connection_params[, ...])aadd_documents
(documents, **kwargs)Async run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Async run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Add or update documents in the vectorstore.
add_texts
(texts[, metadatas, timeout, ...])Insert text data into TencentVectorDB.
adelete
([ids])Async delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Async return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Async return VectorStore initialized from texts and embeddings.
aget_by_ids
(ids, /)Async get documents by their IDs.
amax_marginal_relevance_search
(query[, k, ...])Async return docs selected using the maximal marginal relevance.
Async return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Async return docs most similar to query using a specified search type.
asimilarity_search
(query[, k])Async return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Async return docs most similar to embedding vector.
Async return docs and relevance scores in the range [0, 1].
asimilarity_search_with_score
(*args, **kwargs)Async run similarity search with distance.
delete
([ids, filter_expr])Delete documents from the collection.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Create a collection, indexes it with HNSW, and insert data.
get_by_ids
(ids, /)Get documents by their IDs.
max_marginal_relevance_search
(query[, k, ...])Perform a search and return results that are reordered by MMR.
Perform a search and return results that are reordered by MMR.
search
(query, search_type, **kwargs)Return docs most similar to query using a specified search type.
similarity_search
(query[, k, param, expr, ...])Perform a similarity search against the query string.
similarity_search_by_vector
(embedding[, k, ...])Perform a similarity search against the query string.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Perform a search on a query string and return results with score.
similarity_search_with_score_by_vector
(embedding)Perform a search on a query string and return results with score.
- Parameters
embedding (Embeddings) –
connection_params (ConnectionParams) –
index_params (IndexParams) –
database_name (str) –
collection_name (str) –
drop_old (Optional[bool]) –
collection_description (Optional[str]) –
meta_fields (Optional[List[MetaField]]) –
t_vdb_embedding (Optional[str]) –
- __init__(embedding: ~langchain_core.embeddings.embeddings.Embeddings, connection_params: ~langchain_community.vectorstores.tencentvectordb.ConnectionParams, index_params: ~langchain_community.vectorstores.tencentvectordb.IndexParams = <langchain_community.vectorstores.tencentvectordb.IndexParams object>, database_name: str = 'LangChainDatabase', collection_name: str = 'LangChainCollection', drop_old: ~typing.Optional[bool] = False, collection_description: ~typing.Optional[str] = 'Collection for LangChain', meta_fields: ~typing.Optional[~typing.List[~langchain_community.vectorstores.tencentvectordb.MetaField]] = None, t_vdb_embedding: ~typing.Optional[str] = 'bge-base-zh')[source]¶
- Parameters
embedding (Embeddings) –
connection_params (ConnectionParams) –
index_params (IndexParams) –
database_name (str) –
collection_name (str) –
drop_old (Optional[bool]) –
collection_description (Optional[str]) –
meta_fields (Optional[List[MetaField]]) –
t_vdb_embedding (Optional[str]) –
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Async run more documents through the embeddings and add to the vectorstore.
- Parameters
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
List of IDs of the added texts.
- Raises
ValueError – If the number of IDs does not match the number of documents.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Async run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.
**kwargs (Any) – vectorstore specific parameters.
- Returns
List of ids from adding the texts into the vectorstore.
- Raises
ValueError – If the number of metadatas does not match the number of texts.
ValueError – If the number of ids does not match the number of texts.
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Add or update documents in the vectorstore.
- Parameters
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.
- Returns
List of IDs of the added texts.
- Raises
ValueError – If the number of ids does not match the number of documents.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Insert text data into TencentVectorDB.
- Parameters
texts (Iterable[str]) –
metadatas (Optional[List[dict]]) –
timeout (Optional[int]) –
batch_size (int) –
ids (Optional[List[str]]) –
kwargs (Any) –
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
Async delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete. If None, delete all. Default is None.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Async return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) – List of Documents to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from documents and embeddings.
- Return type
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Async return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) – Texts to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from texts and embeddings.
- Return type
- async aget_by_ids(ids: Sequence[str], /) List[Document] ¶
Async get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
- Parameters
ids (Sequence[str]) – List of ids to retrieve.
- Returns
List of Documents.
- Return type
List[Document]
New in version 0.2.11.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
**kwargs (Any) –
Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that
the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
- search_kwargs (Optional[Dict]): Keyword arguments to pass to the
- search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
- fetch_k: Amount of documents to pass to MMR algorithm
(Default: 20)
- lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Async return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text.
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Async return docs most similar to query.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Async return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Async return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Async run similarity search with distance.
- Parameters
*args (Any) – Arguments to pass to the search method.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Tuples of (doc, similarity_score).
- Return type
List[Tuple[Document, float]]
- delete(ids: Optional[List[str]] = None, filter_expr: Optional[str] = None, **kwargs: Any) Optional[bool] [source]¶
Delete documents from the collection.
- Parameters
ids (Optional[List[str]]) –
filter_expr (Optional[str]) –
kwargs (Any) –
- Return type
Optional[bool]
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) – List of Documents to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from documents and embeddings.
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection_params: Optional[ConnectionParams] = None, index_params: Optional[IndexParams] = None, database_name: str = 'LangChainDatabase', collection_name: str = 'LangChainCollection', drop_old: Optional[bool] = False, collection_description: Optional[str] = 'Collection for LangChain', meta_fields: Optional[List[MetaField]] = None, t_vdb_embedding: Optional[str] = 'bge-base-zh', **kwargs: Any) TencentVectorDB [source]¶
Create a collection, indexes it with HNSW, and insert data.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
connection_params (Optional[ConnectionParams]) –
index_params (Optional[IndexParams]) –
database_name (str) –
collection_name (str) –
drop_old (Optional[bool]) –
collection_description (Optional[str]) –
meta_fields (Optional[List[MetaField]]) –
t_vdb_embedding (Optional[str]) –
kwargs (Any) –
- Return type
- get_by_ids(ids: Sequence[str], /) List[Document] ¶
Get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
- Parameters
ids (Sequence[str]) – List of ids to retrieve.
- Returns
List of Documents.
- Return type
List[Document]
New in version 0.2.11.
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] [source]¶
Perform a search and return results that are reordered by MMR.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
param (Optional[dict]) –
expr (Optional[str]) –
timeout (Optional[int]) –
kwargs (Any) –
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, filter: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] [source]¶
Perform a search and return results that are reordered by MMR.
- Parameters
embedding (list[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
param (Optional[dict]) –
expr (Optional[str]) –
filter (Optional[str]) –
timeout (Optional[int]) –
kwargs (Any) –
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] [source]¶
Perform a similarity search against the query string.
- Parameters
query (str) –
k (int) –
param (Optional[dict]) –
expr (Optional[str]) –
timeout (Optional[int]) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Document] [source]¶
Perform a similarity search against the query string.
- Parameters
embedding (List[float]) –
k (int) –
param (Optional[dict]) –
expr (Optional[str]) –
timeout (Optional[int]) –
kwargs (Any) –
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs.
- Returns
List of Tuples of (doc, similarity_score).
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Perform a search on a query string and return results with score.
- Parameters
query (str) –
k (int) –
param (Optional[dict]) –
expr (Optional[str]) –
timeout (Optional[int]) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, filter: Optional[str] = None, timeout: Optional[int] = None, query: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Perform a search on a query string and return results with score.
- Parameters
embedding (List[float]) –
k (int) –
param (Optional[dict]) –
expr (Optional[str]) –
filter (Optional[str]) –
timeout (Optional[int]) –
query (Optional[str]) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]