langchain_community.vectorstores.jaguar.Jaguar

class langchain_community.vectorstores.jaguar.Jaguar(pod: str, store: str, vector_index: str, vector_type: str, vector_dimension: int, url: str, embedding: Embeddings)[source]

Jaguar API vector store.

See http://www.jaguardb.com See http://github.com/fserv/jaguar-sdk

Example

from langchain_community.vectorstores.jaguar import Jaguar

vectorstore = Jaguar(
    pod = 'vdb',
    store = 'mystore',
    vector_index = 'v',
    vector_type = 'cosine_fraction_float',
    vector_dimension = 1536,
    url='http://192.168.8.88:8080/fwww/',
    embedding=openai_model
)

Attributes

embeddings

Access the query embedding object if available.

Methods

__init__(pod, store, vector_index, ...)

aadd_documents(documents, **kwargs)

Async run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas])

Async run more texts through the embeddings and add to the vectorstore.

add_documents(documents, **kwargs)

Add or update documents in the vectorstore.

add_texts(texts[, metadatas])

Add texts through the embeddings and add to the vectorstore. :param texts: list of text strings to add to the jaguar vector store. :param metadatas: Optional list of metadatas associated with the texts. [{"m1": "v11", "m2": "v12", "m3": "v13", "filecol": "path_file1.jpg" }, {"m1": "v21", "m2": "v22", "m3": "v23", "filecol": "path_file2.jpg" }, {"m1": "v31", "m2": "v32", "m3": "v33", "filecol": "path_file3.jpg" }, {"m1": "v41", "m2": "v42", "m3": "v43", "filecol": "path_file4.jpg" }] :param kwargs: vector_index=name_of_vector_index file_column=name_of_file_column.

adelete([ids])

Async delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Async return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas])

Async return VectorStore initialized from texts and embeddings.

aget_by_ids(ids, /)

Async get documents by their IDs.

amax_marginal_relevance_search(query[, k, ...])

Async return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Async return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Async return docs most similar to query using a specified search type.

asimilarity_search(query[, k])

Async return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Async return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Async return docs and relevance scores in the range [0, 1].

asimilarity_search_with_score(*args, **kwargs)

Async run similarity search with distance.

clear()

Delete all records in jaguardb Args: No args Returns: None

count()

Count records of a store in jaguardb Args: no args Returns: (int) number of records in pod store

create(metadata_str, text_size)

create the vector store on the backend database :param metadata_str: columns and their types :type metadata_str: str

delete(zids, **kwargs)

Delete records in jaguardb by a list of zero-ids :param pod: name of a Pod :type pod: str :param ids: a list of zid as string :type ids: List[str]

drop()

Drop or remove a store in jaguardb Args: no args Returns: None

from_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

from_texts(texts, embedding, url, pod, ...)

Return VectorStore initialized from texts and embeddings.

get_by_ids(ids, /)

Get documents by their IDs.

is_anomalous(query, **kwargs)

Detect if given text is anomalous from the dataset :param query: Text to detect if it is anomaly

login([jaguar_api_key])

login to jaguardb server with a jaguar_api_key or let self._jag find a key :param pod: name of a Pod :type pod: str :param store: name of a vector store :type store: str :param optional jaguar_api_key: API key of user to jaguardb server :type optional jaguar_api_key: str

logout()

Logout to cleanup resources Args: no args Returns: None

max_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

prt(msg)

run(query[, withFile])

Run any query statement in jaguardb :param query: query statement to jaguardb :type query: str

search(query, search_type, **kwargs)

Return docs most similar to query using a specified search type.

similarity_search(query[, k, where, metadatas])

Return Jaguar documents most similar to query, along with scores. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 5. :param where: the where clause in select similarity. For example a where can be "rating > 3.0 and (state = 'NV' or state = 'CA')".

similarity_search_by_vector(embedding[, k])

Return docs most similar to embedding vector.

similarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1].

similarity_search_with_score(query[, k, ...])

Return Jaguar documents most similar to query, along with scores. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 3. :param lambda_val: lexical match parameter for hybrid search. :param where: the where clause in select similarity. For example a where can be "rating > 3.0 and (state = 'NV' or state = 'CA')" :param args: extra options passed to select similarity :param kwargs: vector_index=vcol, vector_type=cosine_fraction_float.

Parameters
  • pod (str) –

  • store (str) –

  • vector_index (str) –

  • vector_type (str) –

  • vector_dimension (int) –

  • url (str) –

  • embedding (Embeddings) –

__init__(pod: str, store: str, vector_index: str, vector_type: str, vector_dimension: int, url: str, embedding: Embeddings)[source]
Parameters
  • pod (str) –

  • store (str) –

  • vector_index (str) –

  • vector_type (str) –

  • vector_dimension (int) –

  • url (str) –

  • embedding (Embeddings) –

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]

Async run more documents through the embeddings and add to the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of IDs does not match the number of documents.

Return type

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]

Async run more texts through the embeddings and add to the vectorstore.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • **kwargs (Any) – vectorstore specific parameters.

Returns

List of ids from adding the texts into the vectorstore.

Raises
  • ValueError – If the number of metadatas does not match the number of texts.

  • ValueError – If the number of ids does not match the number of texts.

Return type

List[str]

add_documents(documents: List[Document], **kwargs: Any) List[str]

Add or update documents in the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of ids does not match the number of documents.

Return type

List[str]

add_texts(texts: List[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str][source]

Add texts through the embeddings and add to the vectorstore. :param texts: list of text strings to add to the jaguar vector store. :param metadatas: Optional list of metadatas associated with the texts.

[{“m1”: “v11”, “m2”: “v12”, “m3”: “v13”, “filecol”: “path_file1.jpg” },

{“m1”: “v21”, “m2”: “v22”, “m3”: “v23”, “filecol”: “path_file2.jpg” }, {“m1”: “v31”, “m2”: “v32”, “m3”: “v33”, “filecol”: “path_file3.jpg” }, {“m1”: “v41”, “m2”: “v42”, “m3”: “v43”, “filecol”: “path_file4.jpg” }]

Parameters
  • kwargs (Any) – vector_index=name_of_vector_index file_column=name_of_file_column

  • texts (List[str]) –

  • metadatas (Optional[List[dict]]) –

Returns

List of ids from adding the texts into the vectorstore

Return type

List[str]

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

Async delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete. If None, delete all. Default is None.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

Async return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST

Async return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from texts and embeddings.

Return type

VectorStore

async aget_by_ids(ids: Sequence[str], /) List[Document]

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever

Return VectorStoreRetriever initialized from this VectorStore.

Parameters

**kwargs (Any) –

Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that

the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:

k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

for similarity_score_threshold

fetch_k: Amount of documents to pass to MMR algorithm

(Default: 20)

lambda_mult: Diversity of results returned by MMR;

1 for minimum diversity and 0 for maximum. (Default: 0.5)

filter: Filter by document metadata

Returns

Retriever class for VectorStore.

Return type

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]

Async return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text.

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Async return docs most similar to query.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Return type

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

Async return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

Return type

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

Async run similarity search with distance.

Parameters
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

clear() None[source]

Delete all records in jaguardb Args: No args Returns: None

Return type

None

count() int[source]

Count records of a store in jaguardb Args: no args Returns: (int) number of records in pod store

Return type

int

create(metadata_str: str, text_size: int) None[source]

create the vector store on the backend database :param metadata_str: columns and their types :type metadata_str: str

Returns

True if successful; False if not successful

Parameters
  • metadata_str (str) –

  • text_size (int) –

Return type

None

delete(zids: List[str], **kwargs: Any) None[source]

Delete records in jaguardb by a list of zero-ids :param pod: name of a Pod :type pod: str :param ids: a list of zid as string :type ids: List[str]

Returns

Do not return anything

Parameters
  • zids (List[str]) –

  • kwargs (Any) –

Return type

None

drop() None[source]

Drop or remove a store in jaguardb Args: no args Returns: None

Return type

None

classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

Return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, url: str, pod: str, store: str, vector_index: str, vector_type: str, vector_dimension: int, metadatas: Optional[List[dict]] = None, jaguar_api_key: Optional[str] = '', **kwargs: Any) Jaguar[source]

Return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • kwargs (Any) – Additional keyword arguments.

  • url (str) –

  • pod (str) –

  • store (str) –

  • vector_index (str) –

  • vector_type (str) –

  • vector_dimension (int) –

  • jaguar_api_key (Optional[str]) –

Returns

VectorStore initialized from texts and embeddings.

Return type

VectorStore

get_by_ids(ids: Sequence[str], /) List[Document]

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

is_anomalous(query: str, **kwargs: Any) bool[source]

Detect if given text is anomalous from the dataset :param query: Text to detect if it is anomaly

Returns

True or False

Parameters
  • query (str) –

  • kwargs (Any) –

Return type

bool

login(jaguar_api_key: Optional[str] = '') bool[source]

login to jaguardb server with a jaguar_api_key or let self._jag find a key :param pod: name of a Pod :type pod: str :param store: name of a vector store :type store: str :param optional jaguar_api_key: API key of user to jaguardb server :type optional jaguar_api_key: str

Returns

True if successful; False if not successful

Parameters

jaguar_api_key (Optional[str]) –

Return type

bool

logout() None[source]

Logout to cleanup resources Args: no args Returns: None

Return type

None

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

prt(msg: str) None[source]
Parameters

msg (str) –

Return type

None

run(query: str, withFile: bool = False) dict[source]

Run any query statement in jaguardb :param query: query statement to jaguardb :type query: str

Returns

None for invalid token, or json result string

Parameters
  • query (str) –

  • withFile (bool) –

Return type

dict

search(query: str, search_type: str, **kwargs: Any) List[Document]

Return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Return Jaguar documents most similar to query, along with scores. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 5. :param where: the where clause in select similarity. For example a

where can be “rating > 3.0 and (state = ‘NV’ or state = ‘CA’)”

Returns

List of Documents most similar to the query

Parameters
  • query (str) –

  • k (int) –

  • where (Optional[str]) –

  • metadatas (Optional[List[str]]) –

  • kwargs (Any) –

Return type

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

Return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

similarity_search_with_score(query: str, k: int = 3, fetch_k: int = -1, where: Optional[str] = None, args: Optional[str] = None, metadatas: Optional[List[str]] = None, **kwargs: Any) List[Tuple[Document, float]][source]

Return Jaguar documents most similar to query, along with scores. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 3. :param lambda_val: lexical match parameter for hybrid search. :param where: the where clause in select similarity. For example a

where can be “rating > 3.0 and (state = ‘NV’ or state = ‘CA’)”

Parameters
  • args (Optional[str]) – extra options passed to select similarity

  • kwargs (Any) – vector_index=vcol, vector_type=cosine_fraction_float

  • query (str) –

  • k (int) –

  • fetch_k (int) –

  • where (Optional[str]) –

  • metadatas (Optional[List[str]]) –

Returns

List of Documents most similar to the query and score for each. List of Tuples of (doc, similarity_score):

[ (doc, score), (doc, score), …]

Return type

List[Tuple[Document, float]]

Examples using Jaguar