langchain_community.vectorstores.elasticsearch
.ApproxRetrievalStrategy¶
- class langchain_community.vectorstores.elasticsearch.ApproxRetrievalStrategy(query_model_id: Optional[str] = None, hybrid: Optional[bool] = False, rrf: Optional[Union[dict, bool]] = True)[source]¶
Deprecated since version 0.0.27: Use
Use class in langchain-elasticsearch package
instead.Approximate retrieval strategy using the HNSW algorithm.
Methods
__init__
([query_model_id, hybrid, rrf])before_index_setup
(client, text_field, ...)Executes before the index is created.
index
(dims_length, vector_query_field, ...)Create the mapping for the Elasticsearch index.
query
(query_vector, query, k, fetch_k, ...)Executes when a search is performed on the store.
Returns whether or not the strategy requires inference to be performed on the text before it is added to the index.
- Parameters
query_model_id (Optional[str]) –
hybrid (Optional[bool]) –
rrf (Optional[Union[dict, bool]]) –
- __init__(query_model_id: Optional[str] = None, hybrid: Optional[bool] = False, rrf: Optional[Union[dict, bool]] = True)[source]¶
- Parameters
query_model_id (Optional[str]) –
hybrid (Optional[bool]) –
rrf (Optional[Union[dict, bool]]) –
- before_index_setup(client: Elasticsearch, text_field: str, vector_query_field: str) None ¶
Executes before the index is created. Used for setting up any required Elasticsearch resources like a pipeline.
- Parameters
client (Elasticsearch) – The Elasticsearch client.
text_field (str) – The field containing the text data in the index.
vector_query_field (str) – The field containing the vector representations in the index.
- Return type
None
- index(dims_length: Optional[int], vector_query_field: str, similarity: Optional[DistanceStrategy]) Dict [source]¶
Create the mapping for the Elasticsearch index.
- Parameters
dims_length (Optional[int]) –
vector_query_field (str) –
similarity (Optional[DistanceStrategy]) –
- Return type
Dict
- query(query_vector: Optional[List[float]], query: Optional[str], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Optional[DistanceStrategy]) Dict [source]¶
Executes when a search is performed on the store.
- Parameters
query_vector (Optional[List[float]]) – The query vector, or None if not using vector-based query.
query (Optional[str]) – The text query, or None if not using text-based query.
k (int) – The total number of results to retrieve.
fetch_k (int) – The number of results to fetch initially.
vector_query_field (str) – The field containing the vector representations in the index.
text_field (str) – The field containing the text data in the index.
filter (List[dict]) – List of filter clauses to apply to the query.
similarity (Optional[DistanceStrategy]) – The similarity strategy to use, or None if not using one.
- Returns
The Elasticsearch query body.
- Return type
Dict
- require_inference() bool ¶
Returns whether or not the strategy requires inference to be performed on the text before it is added to the index.
- Returns
Whether or not the strategy requires inference to be performed on the text before it is added to the index.
- Return type
bool