langchain.vectorstores.starrocks.StarRocks

class langchain.vectorstores.starrocks.StarRocks(embedding: Embeddings, config: Optional[StarRocksSettings] = None, **kwargs: Any)[source]

StarRocks vector store.

You need a pymysql python package, and a valid account to connect to StarRocks.

Right now StarRocks has only implemented cosine_similarity function to compute distance between two vectors. And there is no vector inside right now, so we have to iterate all vectors and compute spatial distance.

For more information, please visit

[StarRocks official site](https://www.starrocks.io/) [StarRocks github](https://github.com/StarRocks/starrocks)

StarRocks Wrapper to LangChain

embedding_function (Embeddings): config (StarRocksSettings): Configuration to StarRocks Client

Attributes

embeddings

Access the query embedding object if available.

metadata_column

Methods

__init__(embedding[, config])

StarRocks Wrapper to LangChain

aadd_documents(documents, **kwargs)

Run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas])

Run more texts through the embeddings and add to the vectorstore.

add_documents(documents, **kwargs)

Run more documents through the embeddings and add to the vectorstore.

add_texts(texts[, metadatas, batch_size, ids])

Insert more texts through the embeddings and add to the VectorStore.

adelete([ids])

Delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas])

Return VectorStore initialized from texts and embeddings.

amax_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Return docs most similar to query using specified search type.

asimilarity_search(query[, k])

Return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1], asynchronously.

asimilarity_search_with_score(*args, **kwargs)

Run similarity search with distance asynchronously.

delete([ids])

Delete by vector ID or other criteria.

drop()

Helper function: Drop data

escape_str(value)

from_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

from_texts(texts, embedding[, metadatas, ...])

Create StarRocks wrapper with existing texts

max_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

search(query, search_type, **kwargs)

Return docs most similar to query using specified search type.

similarity_search(query[, k, where_str])

Perform a similarity search with StarRocks

similarity_search_by_vector(embedding[, k, ...])

Perform a similarity search with StarRocks by vectors

similarity_search_with_relevance_scores(query)

Perform a similarity search with StarRocks

similarity_search_with_score(*args, **kwargs)

Run similarity search with distance.

__init__(embedding: Embeddings, config: Optional[StarRocksSettings] = None, **kwargs: Any) None[source]

StarRocks Wrapper to LangChain

embedding_function (Embeddings): config (StarRocksSettings): Configuration to StarRocks Client

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]

Run more documents through the embeddings and add to the vectorstore.

Parameters

(List[Document] (documents) – Documents to add to the vectorstore.

Returns

List of IDs of the added texts.

Return type

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]

Run more texts through the embeddings and add to the vectorstore.

add_documents(documents: List[Document], **kwargs: Any) List[str]

Run more documents through the embeddings and add to the vectorstore.

Parameters

(List[Document] (documents) – Documents to add to the vectorstore.

Returns

List of IDs of the added texts.

Return type

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) List[str][source]

Insert more texts through the embeddings and add to the VectorStore.

Parameters
  • texts – Iterable of strings to add to the VectorStore.

  • ids – Optional list of ids to associate with the texts.

  • batch_size – Batch size of insertion

  • metadata – Optional column data to be inserted

Returns

List of ids from adding the texts into the VectorStore.

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

Delete by vector ID or other criteria.

Parameters
  • ids – List of ids to delete.

  • **kwargs – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

Return VectorStore initialized from documents and embeddings.

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST

Return VectorStore initialized from texts and embeddings.

Return docs selected using the maximal marginal relevance.

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

Return docs selected using the maximal marginal relevance.

as_retriever(**kwargs: Any) VectorStoreRetriever

Return VectorStoreRetriever initialized from this VectorStore.

Parameters
  • search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

  • search_kwargs (Optional[Dict]) –

    Keyword arguments to pass to the search function. Can include things like:

    k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

    for similarity_score_threshold

    fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR;

    1 for minimum diversity and 0 for maximum. (Default: 0.5)

    filter: Filter by document metadata

Returns

Retriever class for VectorStore.

Return type

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]

Return docs most similar to query using specified search type.

Return docs most similar to query.

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

Return docs most similar to embedding vector.

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

Return docs and relevance scores in the range [0, 1], asynchronously.

0 is dissimilar, 1 is most similar.

Parameters
  • query – input text

  • k – Number of Documents to return. Defaults to 4.

  • **kwargs

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

Run similarity search with distance asynchronously.

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

Delete by vector ID or other criteria.

Parameters
  • ids – List of ids to delete.

  • **kwargs – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

drop() None[source]

Helper function: Drop data

escape_str(value: str) str[source]
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

Return VectorStore initialized from documents and embeddings.

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[StarRocksSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) StarRocks[source]

Create StarRocks wrapper with existing texts

Parameters
  • embedding_function (Embeddings) – Function to extract text embedding

  • texts (Iterable[str]) – List or tuple of strings to be added

  • config (StarRocksSettings, Optional) – StarRocks configuration

  • text_ids (Optional[Iterable], optional) – IDs for the texts. Defaults to None.

  • batch_size (int, optional) – Batchsize when transmitting data to StarRocks. Defaults to 32.

  • metadata (List[dict], optional) – metadata to texts. Defaults to None.

Returns

StarRocks Index

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query – Text to look up documents similar to.

  • k – Number of Documents to return. Defaults to 4.

  • fetch_k – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

Returns

List of Documents selected by maximal marginal relevance.

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding – Embedding to look up documents similar to.

  • k – Number of Documents to return. Defaults to 4.

  • fetch_k – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

Returns

List of Documents selected by maximal marginal relevance.

search(query: str, search_type: str, **kwargs: Any) List[Document]

Return docs most similar to query using specified search type.

Perform a similarity search with StarRocks

Parameters
  • query (str) – query string

  • k (int, optional) – Top K neighbors to retrieve. Defaults to 4.

  • where_str (Optional[str], optional) – where condition string. Defaults to None.

  • NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata.

Returns

List of Documents

Return type

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) List[Document][source]

Perform a similarity search with StarRocks by vectors

Parameters
  • query (str) – query string

  • k (int, optional) – Top K neighbors to retrieve. Defaults to 4.

  • where_str (Optional[str], optional) – where condition string. Defaults to None.

  • NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata.

Returns

List of (Document, similarity)

Return type

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]][source]

Perform a similarity search with StarRocks

Parameters
  • query (str) – query string

  • k (int, optional) – Top K neighbors to retrieve. Defaults to 4.

  • where_str (Optional[str], optional) – where condition string. Defaults to None.

  • NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata.

Returns

List of documents

Return type

List[Document]

similarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

Run similarity search with distance.

Examples using StarRocks