langchain.utilities.tensorflow_datasets.TensorflowDatasets

class langchain.utilities.tensorflow_datasets.TensorflowDatasets[source]

Bases: BaseModel

Access to the TensorFlow Datasets.

The Current implementation can work only with datasets that fit in a memory.

TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data.Datasets. To get started see the Guide: https://www.tensorflow.org/datasets/overview and the list of datasets: https://www.tensorflow.org/datasets/catalog/

overview#all_datasets

You have to provide the sample_to_document_function: a function that

a sample from the dataset-specific format to the Document.

dataset_name

the name of the dataset to load

split_name

the name of the split to load. Defaults to “train”.

load_max_docs

a limit to the number of loaded documents. Defaults to 100.

sample_to_document_function

a function that converts a dataset sample to a Document

Example

from langchain.utilities import TensorflowDatasets

def mlqaen_example_to_document(example: dict) -> Document:
    return Document(
        page_content=decode_to_str(example["context"]),
        metadata={
            "id": decode_to_str(example["id"]),
            "title": decode_to_str(example["title"]),
            "question": decode_to_str(example["question"]),
            "answer": decode_to_str(example["answers"]["text"][0]),
        },
    )

tsds_client = TensorflowDatasets(
        dataset_name="mlqa/en",
        split_name="train",
        load_max_docs=MAX_DOCS,
        sample_to_document_function=mlqaen_example_to_document,
    )

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param dataset_name: str = ''
param load_max_docs: int = 100
param sample_to_document_function: Optional[Callable[[Dict], langchain_core.documents.base.Document]] = None
param split_name: str = 'train'
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

lazy_load() Iterator[Document][source]

Download a selected dataset lazily.

Returns: an iterator of Documents.

load() List[Document][source]

Download a selected dataset.

Returns: a list of Documents.

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
classmethod parse_obj(obj: Any) Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) Model