langchain.memory.token_buffer.ConversationTokenBufferMemory¶

class langchain.memory.token_buffer.ConversationTokenBufferMemory[source]¶

Bases: BaseChatMemory

Conversation chat memory with token limit.

param ai_prefix: str = 'AI'¶
param chat_memory: BaseChatMessageHistory [Optional]¶
param human_prefix: str = 'Human'¶
param input_key: Optional[str] = None¶
param llm: BaseLanguageModel [Required]¶
param max_token_limit: int = 2000¶
param memory_key: str = 'history'¶
param output_key: Optional[str] = None¶
param return_messages: bool = False¶
async aclear() None¶

Clear memory contents.

Return type

None

async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any]¶

Async return key-value pairs given the text input to the chain.

Parameters

inputs (Dict[str, Any]) – The inputs to the chain.

Returns

A dictionary of key-value pairs.

Return type

Dict[str, Any]

async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None¶

Save context from this conversation to buffer.

Parameters
  • inputs (Dict[str, Any]) –

  • outputs (Dict[str, str]) –

Return type

None

clear() None¶

Clear memory contents.

Return type

None

load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any][source]¶

Return history buffer.

Parameters

inputs (Dict[str, Any]) –

Return type

Dict[str, Any]

save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None[source]¶

Save context from this conversation to buffer. Pruned.

Parameters
  • inputs (Dict[str, Any]) –

  • outputs (Dict[str, str]) –

Return type

None

property buffer: Any¶

String buffer of memory.

property buffer_as_messages: List[BaseMessage]¶

Exposes the buffer as a list of messages in case return_messages is True.

property buffer_as_str: str¶

Exposes the buffer as a string in case return_messages is False.