langchain_openai.embeddings.azure.AzureOpenAIEmbeddings

class langchain_openai.embeddings.azure.AzureOpenAIEmbeddings[source]

Bases: OpenAIEmbeddings

Azure OpenAI Embeddings API.

To use, you should have the environment variable AZURE_OPENAI_API_KEY set with your API key or pass it as a named parameter to the constructor.

Example

from langchain_openai import AzureOpenAIEmbeddings

openai = AzureOpenAIEmbeddings(model="text-embedding-3-large")

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param allowed_special: Union[Literal['all'], Set[str], None] = None
param azure_ad_token: Optional[SecretStr] = None

Your Azure Active Directory token.

Automatically inferred from env var AZURE_OPENAI_AD_TOKEN if not provided.

For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.

Constraints
  • type = string

  • writeOnly = True

  • format = password

param azure_ad_token_provider: Union[Callable[[], str], None] = None

A function that returns an Azure Active Directory token.

Will be invoked on every request.

param azure_endpoint: Union[str, None] = None

Your Azure endpoint, including the resource.

Automatically inferred from env var AZURE_OPENAI_ENDPOINT if not provided.

Example: https://example-resource.azure.openai.com/

param check_embedding_ctx_length: bool = True

Whether to check the token length of inputs and automatically split inputs longer than embedding_ctx_length.

param chunk_size: int = 2048

Maximum number of texts to embed in each batch

param default_headers: Union[Mapping[str, str], None] = None
param default_query: Union[Mapping[str, object], None] = None
param deployment: Optional[str] = None (alias 'azure_deployment')

A model deployment.

If given sets the base client URL to include /deployments/{azure_deployment}. Note: this means you won’t be able to use non-deployment endpoints.

param dimensions: Optional[int] = None

The number of dimensions the resulting output embeddings should have.

Only supported in text-embedding-3 and later models.

param disallowed_special: Union[Literal['all'], Set[str], Sequence[str], None] = None
param embedding_ctx_length: int = 8191

The maximum number of tokens to embed at once.

param headers: Any = None
param http_async_client: Union[Any, None] = None

Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you’d like a custom client for sync invocations.

param http_client: Union[Any, None] = None

Optional httpx.Client. Only used for sync invocations. Must specify http_async_client as well if you’d like a custom client for async invocations.

param max_retries: int = 2

Maximum number of retries to make when generating.

param model: str = 'text-embedding-ada-002'
param model_kwargs: Dict[str, Any] [Optional]

Holds any model parameters valid for create call not explicitly specified.

param openai_api_base: Optional[str] = None (alias 'base_url')

Base URL path for API requests, leave blank if not using a proxy or service emulator.

param openai_api_key: Optional[SecretStr] = None (alias 'api_key')

Automatically inferred from env var AZURE_OPENAI_API_KEY if not provided.

Constraints
  • type = string

  • writeOnly = True

  • format = password

param openai_api_type: Optional[str] = None
param openai_api_version: Optional[str] = None (alias 'api_version')

Automatically inferred from env var OPENAI_API_VERSION if not provided.

param openai_organization: Optional[str] = None (alias 'organization')

Automatically inferred from env var OPENAI_ORG_ID if not provided.

param openai_proxy: Optional[str] = None
param request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None (alias 'timeout')

Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.

param retry_max_seconds: int = 20

Max number of seconds to wait between retries

param retry_min_seconds: int = 4

Min number of seconds to wait between retries

param show_progress_bar: bool = False

Whether to show a progress bar when embedding.

param skip_empty: bool = False

Whether to skip empty strings when embedding or raise an error. Defaults to not skipping.

param tiktoken_enabled: bool = True

Set this to False for non-OpenAI implementations of the embeddings API, e.g. the –extensions openai extension for text-generation-webui

param tiktoken_model_name: Optional[str] = None

The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.

param validate_base_url: bool = True
async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) List[List[float]]

Call out to OpenAI’s embedding endpoint async for embedding search docs.

Parameters
  • texts (List[str]) – The list of texts to embed.

  • chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size specified by the class.

Returns

List of embeddings, one for each text.

Return type

List[List[float]]

async aembed_query(text: str) List[float]

Call out to OpenAI’s embedding endpoint async for embedding query text.

Parameters

text (str) – The text to embed.

Returns

Embedding for the text.

Return type

List[float]

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Parameters
  • _fields_set (Optional[SetStr]) –

  • values (Any) –

Return type

Model

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include

  • update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep (bool) – set to True to make a deep copy of the model

  • self (Model) –

Returns

new model instance

Return type

Model

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • by_alias (bool) –

  • skip_defaults (Optional[bool]) –

  • exclude_unset (bool) –

  • exclude_defaults (bool) –

  • exclude_none (bool) –

Return type

DictStrAny

embed_documents(texts: List[str], chunk_size: Optional[int] = 0) List[List[float]]

Call out to OpenAI’s embedding endpoint for embedding search docs.

Parameters
  • texts (List[str]) – The list of texts to embed.

  • chunk_size (Optional[int]) – The chunk size of embeddings. If None, will use the chunk size specified by the class.

Returns

List of embeddings, one for each text.

Return type

List[List[float]]

embed_query(text: str) List[float]

Call out to OpenAI’s embedding endpoint for embedding query text.

Parameters

text (str) – The text to embed.

Returns

Embedding for the text.

Return type

List[float]

classmethod from_orm(obj: Any) Model
Parameters

obj (Any) –

Return type

Model

json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

Parameters
  • include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –

  • by_alias (bool) –

  • skip_defaults (Optional[bool]) –

  • exclude_unset (bool) –

  • exclude_defaults (bool) –

  • exclude_none (bool) –

  • encoder (Optional[Callable[[Any], Any]]) –

  • models_as_dict (bool) –

  • dumps_kwargs (Any) –

Return type

unicode

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
Parameters
  • path (Union[str, Path]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

classmethod parse_obj(obj: Any) Model
Parameters

obj (Any) –

Return type

Model

classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
Parameters
  • b (Union[str, bytes]) –

  • content_type (unicode) –

  • encoding (unicode) –

  • proto (Protocol) –

  • allow_pickle (bool) –

Return type

Model

classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

Return type

DictStrAny

classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
Parameters
  • by_alias (bool) –

  • ref_template (unicode) –

  • dumps_kwargs (Any) –

Return type

unicode

classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

Parameters

localns (Any) –

Return type

None

classmethod validate(value: Any) Model
Parameters

value (Any) –

Return type

Model

Examples using AzureOpenAIEmbeddings