langchain_nomic.embeddings
.NomicEmbeddings¶
- class langchain_nomic.embeddings.NomicEmbeddings(*, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: Literal['remote'] = ...)[source]¶
- class langchain_nomic.embeddings.NomicEmbeddings(*, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: Literal['local', 'dynamic'], device: Optional[str] = ...)
- class langchain_nomic.embeddings.NomicEmbeddings(*, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: str, device: Optional[str] = ...)
NomicEmbeddings embedding model.
Example
from langchain_nomic import NomicEmbeddings model = NomicEmbeddings()
Initialize NomicEmbeddings model.
- Parameters
model (str) – model name
nomic_api_key (Optional[str]) – optionally, set the Nomic API key. Uses the NOMIC_API_KEY environment variable by default.
dimensionality (Optional[int]) – The embedding dimension, for use with Matryoshka-capable models. Defaults to full-size.
inference_mode (str) – How to generate embeddings. One of remote, local (Embed4All), or dynamic (automatic). Defaults to remote.
device (Optional[str]) – The device to use for local embeddings. Choices include cpu, gpu, nvidia, amd, or a specific device name. See the docstring for GPT4All.__init__ for more info. Typically defaults to CPU. Do not use on macOS.
vision_model (Optional[str]) –
Methods
__init__
()Initialize NomicEmbeddings model.
aembed_documents
(texts)Asynchronous Embed search docs.
aembed_query
(text)Asynchronous Embed query text.
embed
(texts, *, task_type)Embed texts.
embed_documents
(texts)Embed search docs.
embed_image
(uris)embed_query
(text)Embed query text.
- __init__(*, model: str, nomic_api_key: Optional[str] = None, dimensionality: Optional[int] = None, inference_mode: Literal['remote'] = 'remote')[source]¶
- __init__(*, model: str, nomic_api_key: Optional[str] = None, dimensionality: Optional[int] = None, inference_mode: Literal['local', 'dynamic'], device: Optional[str] = None)
- __init__(*, model: str, nomic_api_key: Optional[str] = None, dimensionality: Optional[int] = None, inference_mode: str, device: Optional[str] = None)
Initialize NomicEmbeddings model.
- Parameters
model – model name
nomic_api_key – optionally, set the Nomic API key. Uses the NOMIC_API_KEY environment variable by default.
dimensionality – The embedding dimension, for use with Matryoshka-capable models. Defaults to full-size.
inference_mode – How to generate embeddings. One of remote, local (Embed4All), or dynamic (automatic). Defaults to remote.
device – The device to use for local embeddings. Choices include cpu, gpu, nvidia, amd, or a specific device name. See the docstring for GPT4All.__init__ for more info. Typically defaults to CPU. Do not use on macOS.
- async aembed_documents(texts: List[str]) List[List[float]] ¶
Asynchronous Embed search docs.
- Parameters
texts (List[str]) –
- Return type
List[List[float]]
- async aembed_query(text: str) List[float] ¶
Asynchronous Embed query text.
- Parameters
text (str) –
- Return type
List[float]
- embed(texts: List[str], *, task_type: str) List[List[float]] [source]¶
Embed texts.
- Parameters
texts (List[str]) – list of texts to embed
task_type (str) – the task type to use when embedding. One of search_query, search_document, classification, clustering
- Return type
List[List[float]]
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Embed search docs.
- Parameters
texts (List[str]) – list of texts to embed as documents
- Return type
List[List[float]]