langchain_community.embeddings.spacy_embeddings
.SpacyEmbeddings¶
- class langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings[source]¶
Bases:
BaseModel
,Embeddings
Embeddings by spaCy models.
- model_name¶
Name of a spaCy model.
- Type
str
- nlp¶
The spaCy model loaded into memory.
- Type
Any
- embed_documents(texts
List[str]) -> List[List[float]]: Generates embeddings for a list of documents.
- embed_query(text
str) -> List[float]: Generates an embedding for a single piece of text.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param model_name: str = 'en_core_web_sm'¶
- param nlp: Optional[Any] = None¶
- async aembed_documents(texts: List[str]) List[List[float]] [source]¶
Asynchronously generates embeddings for a list of documents. This method is not implemented and raises a NotImplementedError.
- Parameters
texts (List[str]) – The documents to generate embeddings for.
- Raises
NotImplementedError – This method is not implemented.
- Return type
List[List[float]]
- async aembed_query(text: str) List[float] [source]¶
Asynchronously generates an embedding for a single piece of text. This method is not implemented and raises a NotImplementedError.
- Parameters
text (str) – The text to generate an embedding for.
- Raises
NotImplementedError – This method is not implemented.
- Return type
List[float]