langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings¶

class langchain_community.embeddings.huggingface_hub.HuggingFaceHubEmbeddings[source]¶

Bases: BaseModel, Embeddings

Deprecated since version 0.2.2: Use langchain_huggingface.HuggingFaceEndpointEmbeddings instead.

HuggingFaceHub embedding models.

To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor.

Example

from langchain_community.embeddings import HuggingFaceHubEmbeddings
model = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
    model=model,
    task="feature-extraction",
    huggingfacehub_api_token="my-api-key",
)

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param huggingfacehub_api_token: Optional[str] = None¶
param model: Optional[str] = None¶

Model name to use.

param model_kwargs: Optional[dict] = None¶

Keyword arguments to pass to the model.

param repo_id: Optional[str] = None¶

Huggingfacehub repository id, for backward compatibility.

param task: Optional[str] = 'feature-extraction'¶

Task to call the model with.

async aembed_documents(texts: List[str]) List[List[float]][source]¶

Async Call to HuggingFaceHub’s embedding endpoint for embedding search docs.

Parameters

texts (List[str]) – The list of texts to embed.

Returns

List of embeddings, one for each text.

Return type

List[List[float]]

async aembed_query(text: str) List[float][source]¶

Async Call to HuggingFaceHub’s embedding endpoint for embedding query text.

Parameters

text (str) – The text to embed.

Returns

Embeddings for the text.

Return type

List[float]

embed_documents(texts: List[str]) List[List[float]][source]¶

Call out to HuggingFaceHub’s embedding endpoint for embedding search docs.

Parameters

texts (List[str]) – The list of texts to embed.

Returns

List of embeddings, one for each text.

Return type

List[List[float]]

embed_query(text: str) List[float][source]¶

Call out to HuggingFaceHub’s embedding endpoint for embedding query text.

Parameters

text (str) – The text to embed.

Returns

Embeddings for the text.

Return type

List[float]

Examples using HuggingFaceHubEmbeddings¶