langchain_community.embeddings.edenai
.EdenAiEmbeddings¶
- class langchain_community.embeddings.edenai.EdenAiEmbeddings[source]¶
Bases:
BaseModel
,Embeddings
EdenAI embedding. environment variable
EDENAI_API_KEY
set with your API key, or pass it as a named parameter.Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param edenai_api_key: Optional[SecretStr] = None¶
EdenAI API Token
- Constraints
type = string
writeOnly = True
format = password
- param model: Optional[str] = None¶
model name for above provider (eg: ‘gpt-3.5-turbo-instruct’ for openai) available models are shown on https://docs.edenai.co/ under ‘available providers’
- param provider: str = 'openai'¶
embedding provider to use (eg: openai,google etc.)
- async aembed_documents(texts: List[str]) List[List[float]] ¶
Asynchronous Embed search docs.
- Parameters
texts (List[str]) – List of text to embed.
- Returns
List of embeddings.
- Return type
List[List[float]]
- async aembed_query(text: str) List[float] ¶
Asynchronous Embed query text.
- Parameters
text (str) – Text to embed.
- Returns
Embedding.
- Return type
List[float]
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Embed a list of documents using EdenAI.
- Parameters
texts (List[str]) – The list of texts to embed.
- Returns
List of embeddings, one for each text.
- Return type
List[List[float]]