langchain_community.embeddings.baidu_qianfan_endpoint
.QianfanEmbeddingsEndpoint¶
- class langchain_community.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint[source]¶
Bases:
BaseModel
,Embeddings
Baidu Qianfan Embeddings embedding models.
- Setup:
To use, you should have the
qianfan
python package installed, and set environment variablesQIANFAN_AK
,QIANFAN_SK
.pip install qianfan export QIANFAN_AK="your-api-key" export QIANFAN_SK="your-secret_key"
- Instantiate:
from langchain_community.embeddings import QianfanEmbeddingsEndpoint embeddings = QianfanEmbeddingsEndpoint()
- Embed:
# embed the documents vectors = embeddings.embed_documents([text1, text2, ...]) # embed the query vectors = embeddings.embed_query(text) # embed the documents with async vectors = await embeddings.aembed_documents([text1, text2, ...]) # embed the query with async vectors = await embeddings.aembed_query(text)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param chunk_size: int = 16¶
Chunk size when multiple texts are input
- param client: Any = None¶
Qianfan client
- param endpoint: str = ''¶
Endpoint of the Qianfan Embedding, required if custom model used.
- param init_kwargs: Dict[str, Any] [Optional]¶
init kwargs for qianfan client init, such as query_per_second which is associated with qianfan resource object to limit QPS
- param model: Optional[str] = None¶
Model name you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
for now, we support Embedding-V1 and - Embedding-V1 (默认模型) - bge-large-en - bge-large-zh
preset models are mapping to an endpoint. model will be ignored if endpoint is set
- param model_kwargs: Dict[str, Any] [Optional]¶
extra params for model invoke using with do.
- param qianfan_ak: Optional[SecretStr] = None (alias 'api_key')¶
Qianfan application apikey
- Constraints
type = string
writeOnly = True
format = password
- param qianfan_sk: Optional[SecretStr] = None (alias 'secret_key')¶
Qianfan application secretkey
- Constraints
type = string
writeOnly = True
format = password
- async aembed_documents(texts: List[str]) List[List[float]] [source]¶
Asynchronous Embed search docs.
- Parameters
texts (List[str]) – List of text to embed.
- Returns
List of embeddings.
- Return type
List[List[float]]
- async aembed_query(text: str) List[float] [source]¶
Asynchronous Embed query text.
- Parameters
text (str) – Text to embed.
- Returns
Embedding.
- Return type
List[float]
- embed_documents(texts: List[str]) List[List[float]] [source]¶
Embeds a list of text documents using the AutoVOT algorithm.
- Parameters
texts (List[str]) – A list of text documents to embed.
- Returns
- A list of embeddings for each document in the input list.
Each embedding is represented as a list of float values.
- Return type
List[List[float]]