langchain.document_transformers.embeddings_redundant_filter
.EmbeddingsClusteringFilterΒΆ
- class langchain.document_transformers.embeddings_redundant_filter.EmbeddingsClusteringFilter[source]ΒΆ
Bases:
BaseDocumentTransformer
,BaseModel
Perform K-means clustering on document vectors. Returns an arbitrary number of documents closest to center.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param embeddings: langchain_core.embeddings.Embeddings [Required]ΒΆ
Embeddings to use for embedding document contents.
- param num_closest: int = 1ΒΆ
The number of closest vectors to return for each cluster center.
- param num_clusters: int = 5ΒΆ
Number of clusters. Groups of documents with similar meaning.
- param random_state: int = 42ΒΆ
Controls the random number generator used to initialize the cluster centroids. If you set the random_state parameter to None, the KMeans algorithm will use a random number generator that is seeded with the current time. This means that the results of the KMeans algorithm will be different each time you run it.
- param remove_duplicates: bool = FalseΒΆ
By default duplicated results are skipped and replaced by the next closest vector in the cluster. If remove_duplicates is true no replacement will be done: This could dramatically reduce results when there is a lot of overlap between clusters.
- param sorted: bool = FalseΒΆ
By default results are re-ordered βgroupingβ them by cluster, if sorted is true result will be ordered by the original position from the retriever
- async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document] ΒΆ
Asynchronously transform a list of documents.
- Parameters
documents β A sequence of Documents to be transformed.
- Returns
A list of transformed Documents.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ΒΆ
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ΒΆ
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep β set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ΒΆ
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model ΒΆ
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ΒΆ
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- classmethod parse_obj(obj: Any) Model ΒΆ
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ΒΆ
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ΒΆ
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ΒΆ
- transform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document] [source]ΒΆ
Filter down documents.
- classmethod update_forward_refs(**localns: Any) None ΒΆ
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model ΒΆ