langchain.document_loaders.embaas.EmbaasLoader

class langchain.document_loaders.embaas.EmbaasLoader[source]

Bases: BaseEmbaasLoader, BaseLoader

Load from Embaas.

To use, you should have the environment variable EMBAAS_API_KEY set with your API key, or pass it as a named parameter to the constructor.

Example

# Default parsing
from langchain.document_loaders.embaas import EmbaasLoader
loader = EmbaasLoader(file_path="example.mp3")
documents = loader.load()

# Custom api parameters (create embeddings automatically)
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader(
    file_path="example.pdf",
    params={
        "should_embed": True,
        "model": "e5-large-v2",
        "chunk_size": 256,
        "chunk_splitter": "CharacterTextSplitter"
    }
)
documents = loader.load()

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param api_url: str = 'https://api.embaas.io/v1/document/extract-text/bytes/'

The URL of the Embaas document extraction API.

param blob_loader: Optional[langchain.document_loaders.embaas.EmbaasBlobLoader] = None

The blob loader to use. If not provided, a default one will be created.

param embaas_api_key: Optional[str] = None

The API key for the Embaas document extraction API.

param file_path: str [Required]

The path to the file to load.

param params: langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters = {}

Additional parameters to pass to the Embaas document extraction API.

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any) Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

lazy_load() Iterator[Document][source]

Load the documents from the file path lazily.

load() List[Document][source]

Load data into Document objects.

load_and_split(text_splitter: Optional[TextSplitter] = None) List[Document][source]

Load Documents and split into chunks. Chunks are returned as Documents.

Parameters

text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter.

Returns

List of Documents.

classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
classmethod parse_obj(obj: Any) Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode
classmethod update_forward_refs(**localns: Any) None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any) Model

Examples using EmbaasLoader