Skip to main content
Ctrl+K
🦜🔗 LangChain  documentation - Home
  • Reference
  • Legacy reference
Ctrl+K
Docs
  • GitHub
  • X / Twitter
Ctrl+K
  • Reference
  • Legacy reference
Docs
  • GitHub
  • X / Twitter

Section Navigation

Base packages

  • Core
  • Langchain
  • Text Splitters
  • Community
  • Experimental

Integrations

  • AI21
  • Airbyte
  • Anthropic
  • AstraDB
  • AWS
    • agents
    • chat_models
    • embeddings
    • function_calling
    • graphs
    • llms
    • retrievers
    • utilities
      • TokenEscaper
      • DistanceStrategy
      • cosine_similarity
      • cosine_similarity_top_k
      • get_client
      • filter_complex_metadata
      • maximal_marginal_relevance
    • utils
    • vectorstores
  • Azure Dynamic Sessions
  • Box
  • Chroma
  • Cohere
  • Couchbase
  • Elasticsearch
  • Exa
  • Fireworks
  • Google Community
  • Google GenAI
  • Google VertexAI
  • Groq
  • Huggingface
  • Milvus
  • MistralAI
  • MongoDB
  • Nomic
  • Nvidia Ai Endpoints
  • Ollama
  • OpenAI
  • Pinecone
  • Postgres
  • Prompty
  • Qdrant
  • Robocorp
  • Together
  • Unstructured
  • VoyageAI
  • Weaviate
  • LangChain Python API Reference
  • utilities
  • DistanceStrategy

DistanceStrategy#

class langchain_aws.utilities.utils.DistanceStrategy(value)[source]#

Enumerator of the Distance strategies for calculating distances between vectors.

EUCLIDEAN_DISTANCE = 'EUCLIDEAN_DISTANCE'#
MAX_INNER_PRODUCT = 'MAX_INNER_PRODUCT'#
DOT_PRODUCT = 'DOT_PRODUCT'#
JACCARD = 'JACCARD'#
COSINE = 'COSINE'#

Examples using DistanceStrategy

  • Kinetica Vectorstore API

  • Oracle AI Vector Search: Vector Store

  • SAP HANA Cloud Vector Engine

  • SemaDB

  • SingleStoreDB

On this page
  • DistanceStrategy
    • DistanceStrategy.EUCLIDEAN_DISTANCE
    • DistanceStrategy.MAX_INNER_PRODUCT
    • DistanceStrategy.DOT_PRODUCT
    • DistanceStrategy.JACCARD
    • DistanceStrategy.COSINE

© Copyright 2023, LangChain Inc.