langchain API Reference

langchain.adapters

Classes

adapters.openai.ChatCompletion()

Chat completion.

Functions

adapters.openai.aenumerate(iterable[, start])

Async version of enumerate function.

adapters.openai.convert_dict_to_message(_dict)

Convert a dictionary to a LangChain message.

adapters.openai.convert_message_to_dict(message)

Convert a LangChain message to a dictionary.

adapters.openai.convert_messages_for_finetuning(...)

Convert messages to a list of lists of dictionaries for fine-tuning.

adapters.openai.convert_openai_messages(messages)

Convert dictionaries representing OpenAI messages to LangChain format.

langchain.agents

Agent is a class that uses an LLM to choose a sequence of actions to take.

In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order.

Agents select and use Tools and Toolkits for actions.

Class hierarchy:

BaseSingleActionAgent --> LLMSingleActionAgent
                          OpenAIFunctionsAgent
                          XMLAgent
                          Agent --> <name>Agent  # Examples: ZeroShotAgent, ChatAgent


BaseMultiActionAgent  --> OpenAIMultiFunctionsAgent

Main helpers:

AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator,
AgentAction, AgentFinish

Classes

agents.agent.Agent

Agent that calls the language model and deciding the action.

agents.agent.AgentExecutor

Agent that is using tools.

agents.agent.AgentOutputParser

Base class for parsing agent output into agent action/finish.

agents.agent.BaseMultiActionAgent

Base Multi Action Agent class.

agents.agent.BaseSingleActionAgent

Base Single Action Agent class.

agents.agent.ExceptionTool

Tool that just returns the query.

agents.agent.LLMSingleActionAgent

Base class for single action agents.

agents.agent.MultiActionAgentOutputParser

Base class for parsing agent output into agent actions/finish.

agents.agent.RunnableAgent

Agent powered by runnables.

agents.agent.RunnableMultiActionAgent

Agent powered by runnables.

agents.agent_iterator.AgentExecutorIterator(...)

Iterator for AgentExecutor.

agents.agent_iterator.BaseAgentExecutorIterator()

Base class for AgentExecutorIterator.

agents.agent_toolkits.ainetwork.toolkit.AINetworkToolkit

Toolkit for interacting with AINetwork Blockchain.

agents.agent_toolkits.amadeus.toolkit.AmadeusToolkit

Toolkit for interacting with Amadeus which offers APIs for travel search.

agents.agent_toolkits.azure_cognitive_services.AzureCognitiveServicesToolkit

Toolkit for Azure Cognitive Services.

agents.agent_toolkits.base.BaseToolkit

Base Toolkit representing a collection of related tools.

agents.agent_toolkits.clickup.toolkit.ClickupToolkit

Clickup Toolkit.

agents.agent_toolkits.file_management.toolkit.FileManagementToolkit

Toolkit for interacting with local files.

agents.agent_toolkits.github.toolkit.GitHubToolkit

GitHub Toolkit.

agents.agent_toolkits.gitlab.toolkit.GitLabToolkit

GitLab Toolkit.

agents.agent_toolkits.gmail.toolkit.GmailToolkit

Toolkit for interacting with Gmail.

agents.agent_toolkits.jira.toolkit.JiraToolkit

Jira Toolkit.

agents.agent_toolkits.json.toolkit.JsonToolkit

Toolkit for interacting with a JSON spec.

agents.agent_toolkits.multion.toolkit.MultionToolkit

Toolkit for interacting with the Browser Agent.

agents.agent_toolkits.nla.tool.NLATool

Natural Language API Tool.

agents.agent_toolkits.nla.toolkit.NLAToolkit

Natural Language API Toolkit.

agents.agent_toolkits.office365.toolkit.O365Toolkit

Toolkit for interacting with Office 365.

agents.agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing

A tool that sends a DELETE request and parses the response.

agents.agent_toolkits.openapi.planner.RequestsGetToolWithParsing

Requests GET tool with LLM-instructed extraction of truncated responses.

agents.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing

Requests PATCH tool with LLM-instructed extraction of truncated responses.

agents.agent_toolkits.openapi.planner.RequestsPostToolWithParsing

Requests POST tool with LLM-instructed extraction of truncated responses.

agents.agent_toolkits.openapi.planner.RequestsPutToolWithParsing

Requests PUT tool with LLM-instructed extraction of truncated responses.

agents.agent_toolkits.openapi.spec.ReducedOpenAPISpec(...)

A reduced OpenAPI spec.

agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit

Toolkit for interacting with an OpenAPI API.

agents.agent_toolkits.openapi.toolkit.RequestsToolkit

Toolkit for making REST requests.

agents.agent_toolkits.playwright.toolkit.PlayWrightBrowserToolkit

Toolkit for PlayWright browser tools.

agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit

Toolkit for interacting with Power BI dataset.

agents.agent_toolkits.spark_sql.toolkit.SparkSQLToolkit

Toolkit for interacting with Spark SQL.

agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit

Toolkit for interacting with SQL databases.

agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo

Information about a VectorStore.

agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit

Toolkit for routing between Vector Stores.

agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit

Toolkit for interacting with a Vector Store.

agents.agent_toolkits.zapier.toolkit.ZapierToolkit

Zapier Toolkit.

agents.agent_types.AgentType(value[, names, ...])

An enum for agent types.

agents.chat.base.ChatAgent

Chat Agent.

agents.chat.output_parser.ChatOutputParser

Output parser for the chat agent.

agents.conversational.base.ConversationalAgent

An agent that holds a conversation in addition to using tools.

agents.conversational.output_parser.ConvoOutputParser

Output parser for the conversational agent.

agents.conversational_chat.base.ConversationalChatAgent

An agent designed to hold a conversation in addition to using tools.

agents.conversational_chat.output_parser.ConvoOutputParser

Output parser for the conversational agent.

agents.mrkl.base.ChainConfig(action_name, ...)

Configuration for chain to use in MRKL system.

agents.mrkl.base.MRKLChain

[Deprecated] Chain that implements the MRKL system.

agents.mrkl.base.ZeroShotAgent

Agent for the MRKL chain.

agents.mrkl.output_parser.MRKLOutputParser

MRKL Output parser for the chat agent.

agents.openai_assistant.base.OpenAIAssistantAction

AgentAction with info needed to submit custom tool output to existing run.

agents.openai_assistant.base.OpenAIAssistantFinish

AgentFinish with run and thread metadata.

agents.openai_assistant.base.OpenAIAssistantRunnable

Run an OpenAI Assistant.

agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory

Memory used to save agent output AND intermediate steps.

agents.openai_functions_agent.base.OpenAIFunctionsAgent

An Agent driven by OpenAIs function powered API.

agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent

An Agent driven by OpenAIs function powered API.

agents.output_parsers.json.JSONAgentOutputParser

Parses tool invocations and final answers in JSON format.

agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser

Parses a message into agent action/finish.

agents.output_parsers.openai_tools.OpenAIToolAgentAction

Override init to support instantiation by position for backward compat.

agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser

Parses a message into agent actions/finish.

agents.output_parsers.react_json_single_input.ReActJsonSingleInputOutputParser

Parses ReAct-style LLM calls that have a single tool input in json format.

agents.output_parsers.react_single_input.ReActSingleInputOutputParser

Parses ReAct-style LLM calls that have a single tool input.

agents.output_parsers.self_ask.SelfAskOutputParser

Parses self-ask style LLM calls.

agents.output_parsers.xml.XMLAgentOutputParser

Parses tool invocations and final answers in XML format.

agents.react.base.DocstoreExplorer(docstore)

Class to assist with exploration of a document store.

agents.react.base.ReActChain

[Deprecated] Chain that implements the ReAct paper.

agents.react.base.ReActDocstoreAgent

Agent for the ReAct chain.

agents.react.base.ReActTextWorldAgent

Agent for the ReAct TextWorld chain.

agents.react.output_parser.ReActOutputParser

Output parser for the ReAct agent.

agents.schema.AgentScratchPadChatPromptTemplate

Chat prompt template for the agent scratchpad.

agents.self_ask_with_search.base.SelfAskWithSearchAgent

Agent for the self-ask-with-search paper.

agents.self_ask_with_search.base.SelfAskWithSearchChain

[Deprecated] Chain that does self-ask with search.

agents.structured_chat.base.StructuredChatAgent

Structured Chat Agent.

agents.structured_chat.output_parser.StructuredChatOutputParser

Output parser for the structured chat agent.

agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries

Output parser with retries for the structured chat agent.

agents.tools.InvalidTool

Tool that is run when invalid tool name is encountered by agent.

agents.xml.base.XMLAgent

Agent that uses XML tags.

Functions

agents.agent_iterator.rebuild_callback_manager_on_set(...)

Decorator to force setters to rebuild callback mgr

agents.agent_toolkits.conversational_retrieval.openai_functions.create_conversational_retrieval_agent(...)

A convenience method for creating a conversational retrieval agent.

agents.agent_toolkits.json.base.create_json_agent(...)

Construct a json agent from an LLM and tools.

agents.agent_toolkits.openapi.base.create_openapi_agent(...)

Construct an OpenAPI agent from an LLM and tools.

agents.agent_toolkits.openapi.planner.create_openapi_agent(...)

Instantiate OpenAI API planner and controller for a given spec.

agents.agent_toolkits.openapi.spec.reduce_openapi_spec(spec)

Simplify/distill/minify a spec somehow.

agents.agent_toolkits.powerbi.base.create_pbi_agent(llm)

Construct a Power BI agent from an LLM and tools.

agents.agent_toolkits.powerbi.chat_base.create_pbi_chat_agent(llm)

Construct a Power BI agent from a Chat LLM and tools.

agents.agent_toolkits.spark_sql.base.create_spark_sql_agent(...)

Construct a Spark SQL agent from an LLM and tools.

agents.agent_toolkits.sql.base.create_sql_agent(...)

Construct an SQL agent from an LLM and tools.

agents.agent_toolkits.vectorstore.base.create_vectorstore_agent(...)

Construct a VectorStore agent from an LLM and tools.

agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent(...)

Construct a VectorStore router agent from an LLM and tools.

agents.format_scratchpad.log.format_log_to_str(...)

Construct the scratchpad that lets the agent continue its thought process.

agents.format_scratchpad.log_to_messages.format_log_to_messages(...)

Construct the scratchpad that lets the agent continue its thought process.

agents.format_scratchpad.openai_functions.format_to_openai_function_messages(...)

Convert (AgentAction, tool output) tuples into FunctionMessages.

agents.format_scratchpad.openai_functions.format_to_openai_functions(...)

Convert (AgentAction, tool output) tuples into FunctionMessages.

agents.format_scratchpad.openai_tools.format_to_openai_tool_messages(...)

Convert (AgentAction, tool output) tuples into FunctionMessages.

agents.format_scratchpad.xml.format_xml(...)

Format the intermediate steps as XML.

agents.initialize.initialize_agent(tools, llm)

Load an agent executor given tools and LLM.

agents.load_tools.get_all_tool_names()

Get a list of all possible tool names.

agents.load_tools.load_huggingface_tool(...)

Loads a tool from the HuggingFace Hub.

agents.load_tools.load_tools(tool_names[, ...])

Load tools based on their name.

agents.loading.load_agent(path, **kwargs)

Unified method for loading an agent from LangChainHub or local fs.

agents.loading.load_agent_from_config(config)

Load agent from Config Dict.

agents.output_parsers.openai_tools.parse_ai_message_to_openai_tool_action(message)

Parse an AI message potentially containing tool_calls.

agents.utils.validate_tools_single_input(...)

Validate tools for single input.

langchain.agents.format_scratchpad

Logic for formatting intermediate steps into an agent scratchpad.

Intermediate steps refers to the list of (AgentAction, observation) tuples that result from previous iterations of the agent. Depending on the prompting strategy you are using, you may want to format these differently before passing them into the LLM.

Functions

agents.format_scratchpad.log.format_log_to_str(...)

Construct the scratchpad that lets the agent continue its thought process.

agents.format_scratchpad.log_to_messages.format_log_to_messages(...)

Construct the scratchpad that lets the agent continue its thought process.

agents.format_scratchpad.openai_functions.format_to_openai_function_messages(...)

Convert (AgentAction, tool output) tuples into FunctionMessages.

agents.format_scratchpad.openai_functions.format_to_openai_functions(...)

Convert (AgentAction, tool output) tuples into FunctionMessages.

agents.format_scratchpad.openai_tools.format_to_openai_tool_messages(...)

Convert (AgentAction, tool output) tuples into FunctionMessages.

agents.format_scratchpad.xml.format_xml(...)

Format the intermediate steps as XML.

langchain.agents.output_parsers

Parsing utils to go from string to AgentAction or Agent Finish.

AgentAction means that an action should be taken. This contains the name of the tool to use, the input to pass to that tool, and a log variable (which contains a log of the agent’s thinking).

AgentFinish means that a response should be given. This contains a return_values dictionary. This usually contains a single output key, but can be extended to contain more. This also contains a log variable (which contains a log of the agent’s thinking).

Classes

agents.output_parsers.json.JSONAgentOutputParser

Parses tool invocations and final answers in JSON format.

agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser

Parses a message into agent action/finish.

agents.output_parsers.openai_tools.OpenAIToolAgentAction

Override init to support instantiation by position for backward compat.

agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser

Parses a message into agent actions/finish.

agents.output_parsers.react_json_single_input.ReActJsonSingleInputOutputParser

Parses ReAct-style LLM calls that have a single tool input in json format.

agents.output_parsers.react_single_input.ReActSingleInputOutputParser

Parses ReAct-style LLM calls that have a single tool input.

agents.output_parsers.self_ask.SelfAskOutputParser

Parses self-ask style LLM calls.

agents.output_parsers.xml.XMLAgentOutputParser

Parses tool invocations and final answers in XML format.

Functions

agents.output_parsers.openai_tools.parse_ai_message_to_openai_tool_action(message)

Parse an AI message potentially containing tool_calls.

langchain.cache

Warning

Beta Feature!

Cache provides an optional caching layer for LLMs.

Cache is useful for two reasons:

  • It can save you money by reducing the number of API calls you make to the LLM provider if you’re often requesting the same completion multiple times.

  • It can speed up your application by reducing the number of API calls you make to the LLM provider.

Cache directly competes with Memory. See documentation for Pros and Cons.

Class hierarchy:

BaseCache --> <name>Cache  # Examples: InMemoryCache, RedisCache, GPTCache

Classes

cache.CassandraCache([session, keyspace, ...])

Cache that uses Cassandra / Astra DB as a backend.

cache.CassandraSemanticCache(session, ...[, ...])

Cache that uses Cassandra as a vector-store backend for semantic (i.e.

cache.FullLLMCache(**kwargs)

SQLite table for full LLM Cache (all generations).

cache.FullMd5LLMCache(**kwargs)

SQLite table for full LLM Cache (all generations).

cache.GPTCache([init_func])

Cache that uses GPTCache as a backend.

cache.InMemoryCache()

Cache that stores things in memory.

cache.MomentoCache(cache_client, cache_name, *)

Cache that uses Momento as a backend.

cache.RedisCache(redis_, *[, ttl])

Cache that uses Redis as a backend.

cache.RedisSemanticCache(redis_url, embedding)

Cache that uses Redis as a vector-store backend.

cache.SQLAlchemyCache(engine, cache_schema)

Cache that uses SQAlchemy as a backend.

cache.SQLAlchemyMd5Cache(engine, cache_schema)

Cache that uses SQAlchemy as a backend.

cache.SQLiteCache([database_path])

Cache that uses SQLite as a backend.

cache.UpstashRedisCache(redis_, *[, ttl])

Cache that uses Upstash Redis as a backend.

Functions

langchain.callbacks

Callback handlers allow listening to events in LangChain.

Class hierarchy:

BaseCallbackHandler --> <name>CallbackHandler  # Example: AimCallbackHandler

Classes

callbacks.aim_callback.AimCallbackHandler([...])

Callback Handler that logs to Aim.

callbacks.aim_callback.BaseMetadataCallbackHandler()

This class handles the metadata and associated function states for callbacks.

callbacks.argilla_callback.ArgillaCallbackHandler(...)

Callback Handler that logs into Argilla.

callbacks.arize_callback.ArizeCallbackHandler([...])

Callback Handler that logs to Arize.

callbacks.arthur_callback.ArthurCallbackHandler(...)

Callback Handler that logs to Arthur platform.

callbacks.clearml_callback.ClearMLCallbackHandler([...])

Callback Handler that logs to ClearML.

callbacks.comet_ml_callback.CometCallbackHandler([...])

Callback Handler that logs to Comet.

callbacks.confident_callback.DeepEvalCallbackHandler(metrics)

Callback Handler that logs into deepeval.

callbacks.context_callback.ContextCallbackHandler([...])

Callback Handler that records transcripts to the Context service.

callbacks.file.FileCallbackHandler(filename)

Callback Handler that writes to a file.

callbacks.flyte_callback.FlyteCallbackHandler()

This callback handler that is used within a Flyte task.

callbacks.human.HumanApprovalCallbackHandler(...)

Callback for manually validating values.

callbacks.human.HumanRejectedException

Exception to raise when a person manually review and rejects a value.

callbacks.infino_callback.InfinoCallbackHandler([...])

Callback Handler that logs to Infino.

callbacks.labelstudio_callback.LabelStudioCallbackHandler([...])

Label Studio callback handler.

callbacks.labelstudio_callback.LabelStudioMode(value)

Label Studio mode enumerator.

callbacks.llmonitor_callback.LLMonitorCallbackHandler([...])

Callback Handler for LLMonitor`.

callbacks.llmonitor_callback.UserContextManager(user_id)

Context manager for LLMonitor user context.

callbacks.mlflow_callback.MlflowCallbackHandler([...])

Callback Handler that logs metrics and artifacts to mlflow server.

callbacks.mlflow_callback.MlflowLogger(**kwargs)

Callback Handler that logs metrics and artifacts to mlflow server.

callbacks.openai_info.OpenAICallbackHandler()

Callback Handler that tracks OpenAI info.

callbacks.promptlayer_callback.PromptLayerCallbackHandler([...])

Callback handler for promptlayer.

callbacks.sagemaker_callback.SageMakerCallbackHandler(run)

Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments.

callbacks.streaming_aiter.AsyncIteratorCallbackHandler()

Callback handler that returns an async iterator.

callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*)

Callback handler that returns an async iterator.

callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*)

Callback handler for streaming in agents.

callbacks.streamlit.mutable_expander.ChildRecord(...)

The child record as a NamedTuple.

callbacks.streamlit.mutable_expander.ChildType(value)

The enumerator of the child type.

callbacks.streamlit.mutable_expander.MutableExpander(...)

A Streamlit expander that can be renamed and dynamically expanded/collapsed.

callbacks.streamlit.streamlit_callback_handler.LLMThought(...)

A thought in the LLM's thought stream.

callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler()

Generates markdown labels for LLMThought containers.

callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value)

Enumerator of the LLMThought state.

callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(...)

A callback handler that writes to a Streamlit app.

callbacks.streamlit.streamlit_callback_handler.ToolRecord(...)

The tool record as a NamedTuple.

callbacks.tracers.wandb.RunProcessor(...)

Handles the conversion of a LangChain Runs into a WBTraceTree.

callbacks.tracers.wandb.WandbRunArgs

Arguments for the WandbTracer.

callbacks.tracers.wandb.WandbTracer([run_args])

Callback Handler that logs to Weights and Biases.

callbacks.trubrics_callback.TrubricsCallbackHandler([...])

Callback handler for Trubrics.

callbacks.utils.BaseMetadataCallbackHandler()

This class handles the metadata and associated function states for callbacks.

callbacks.wandb_callback.WandbCallbackHandler([...])

Callback Handler that logs to Weights and Biases.

callbacks.whylabs_callback.WhyLabsCallbackHandler(...)

Callback Handler for logging to WhyLabs.

Functions

callbacks.aim_callback.import_aim()

Import the aim python package and raise an error if it is not installed.

callbacks.clearml_callback.import_clearml()

Import the clearml python package and raise an error if it is not installed.

callbacks.comet_ml_callback.import_comet_ml()

Import comet_ml and raise an error if it is not installed.

callbacks.context_callback.import_context()

Import the getcontext package.

callbacks.flyte_callback.analyze_text(text)

Analyze text using textstat and spacy.

callbacks.flyte_callback.import_flytekit()

Import flytekit and flytekitplugins-deck-standard.

callbacks.infino_callback.get_num_tokens(...)

Calculate num tokens for OpenAI with tiktoken package.

callbacks.infino_callback.import_infino()

Import the infino client.

callbacks.infino_callback.import_tiktoken()

Import tiktoken for counting tokens for OpenAI models.

callbacks.labelstudio_callback.get_default_label_configs(mode)

Get default Label Studio configs for the given mode.

callbacks.llmonitor_callback.identify(user_id)

Builds an LLMonitor UserContextManager

callbacks.manager.get_openai_callback()

Get the OpenAI callback handler in a context manager.

callbacks.manager.wandb_tracing_enabled([...])

Get the WandbTracer in a context manager.

callbacks.mlflow_callback.analyze_text(text)

Analyze text using textstat and spacy.

callbacks.mlflow_callback.construct_html_from_prompt_and_generation(...)

Construct an html element from a prompt and a generation.

callbacks.mlflow_callback.import_mlflow()

Import the mlflow python package and raise an error if it is not installed.

callbacks.openai_info.get_openai_token_cost_for_model(...)

Get the cost in USD for a given model and number of tokens.

callbacks.openai_info.standardize_model_name(...)

Standardize the model name to a format that can be used in the OpenAI API.

callbacks.sagemaker_callback.save_json(data, ...)

Save dict to local file path.

callbacks.utils.flatten_dict(nested_dict[, ...])

Flattens a nested dictionary into a flat dictionary.

callbacks.utils.hash_string(s)

Hash a string using sha1.

callbacks.utils.import_pandas()

Import the pandas python package and raise an error if it is not installed.

callbacks.utils.import_spacy()

Import the spacy python package and raise an error if it is not installed.

callbacks.utils.import_textstat()

Import the textstat python package and raise an error if it is not installed.

callbacks.utils.load_json(json_path)

Load json file to a string.

callbacks.wandb_callback.analyze_text(text)

Analyze text using textstat and spacy.

callbacks.wandb_callback.construct_html_from_prompt_and_generation(...)

Construct an html element from a prompt and a generation.

callbacks.wandb_callback.import_wandb()

Import the wandb python package and raise an error if it is not installed.

callbacks.wandb_callback.load_json_to_dict(...)

Load json file to a dictionary.

callbacks.whylabs_callback.import_langkit([...])

Import the langkit python package and raise an error if it is not installed.

langchain.chains

Chains are easily reusable components linked together.

Chains encode a sequence of calls to components like models, document retrievers, other Chains, etc., and provide a simple interface to this sequence.

The Chain interface makes it easy to create apps that are:

  • Stateful: add Memory to any Chain to give it state,

  • Observable: pass Callbacks to a Chain to execute additional functionality, like logging, outside the main sequence of component calls,

  • Composable: combine Chains with other components, including other Chains.

Class hierarchy:

Chain --> <name>Chain  # Examples: LLMChain, MapReduceChain, RouterChain

Classes

chains.api.base.APIChain

Chain that makes API calls and summarizes the responses to answer a question.

chains.api.openapi.chain.OpenAPIEndpointChain

Chain interacts with an OpenAPI endpoint using natural language.

chains.api.openapi.requests_chain.APIRequesterChain

Get the request parser.

chains.api.openapi.requests_chain.APIRequesterOutputParser

Parse the request and error tags.

chains.api.openapi.response_chain.APIResponderChain

Get the response parser.

chains.api.openapi.response_chain.APIResponderOutputParser

Parse the response and error tags.

chains.base.Chain

Abstract base class for creating structured sequences of calls to components.

chains.combine_documents.base.AnalyzeDocumentChain

Chain that splits documents, then analyzes it in pieces.

chains.combine_documents.base.BaseCombineDocumentsChain

Base interface for chains combining documents.

chains.combine_documents.map_reduce.MapReduceDocumentsChain

Combining documents by mapping a chain over them, then combining results.

chains.combine_documents.map_rerank.MapRerankDocumentsChain

Combining documents by mapping a chain over them, then reranking results.

chains.combine_documents.reduce.AsyncCombineDocsProtocol(...)

Interface for the combine_docs method.

chains.combine_documents.reduce.CombineDocsProtocol(...)

Interface for the combine_docs method.

chains.combine_documents.reduce.ReduceDocumentsChain

Combine documents by recursively reducing them.

chains.combine_documents.refine.RefineDocumentsChain

Combine documents by doing a first pass and then refining on more documents.

chains.combine_documents.stuff.StuffDocumentsChain

Chain that combines documents by stuffing into context.

chains.constitutional_ai.base.ConstitutionalChain

Chain for applying constitutional principles.

chains.constitutional_ai.models.ConstitutionalPrinciple

Class for a constitutional principle.

chains.conversation.base.ConversationChain

Chain to have a conversation and load context from memory.

chains.conversational_retrieval.base.BaseConversationalRetrievalChain

Chain for chatting with an index.

chains.conversational_retrieval.base.ChatVectorDBChain

Chain for chatting with a vector database.

chains.conversational_retrieval.base.ConversationalRetrievalChain

Chain for having a conversation based on retrieved documents.

chains.conversational_retrieval.base.InputType

Create a new model by parsing and validating input data from keyword arguments.

chains.elasticsearch_database.base.ElasticsearchDatabaseChain

Chain for interacting with Elasticsearch Database.

chains.flare.base.FlareChain

Chain that combines a retriever, a question generator, and a response generator.

chains.flare.base.QuestionGeneratorChain

Chain that generates questions from uncertain spans.

chains.flare.prompts.FinishedOutputParser

Output parser that checks if the output is finished.

chains.graph_qa.arangodb.ArangoGraphQAChain

Chain for question-answering against a graph by generating AQL statements.

chains.graph_qa.base.GraphQAChain

Chain for question-answering against a graph.

chains.graph_qa.cypher.GraphCypherQAChain

Chain for question-answering against a graph by generating Cypher statements.

chains.graph_qa.cypher_utils.CypherQueryCorrector(schemas)

Used to correct relationship direction in generated Cypher statements.

chains.graph_qa.cypher_utils.Schema(...)

Create new instance of Schema(left_node, relation, right_node)

chains.graph_qa.falkordb.FalkorDBQAChain

Chain for question-answering against a graph by generating Cypher statements.

chains.graph_qa.hugegraph.HugeGraphQAChain

Chain for question-answering against a graph by generating gremlin statements.

chains.graph_qa.kuzu.KuzuQAChain

Question-answering against a graph by generating Cypher statements for Kùzu.

chains.graph_qa.nebulagraph.NebulaGraphQAChain

Chain for question-answering against a graph by generating nGQL statements.

chains.graph_qa.neptune_cypher.NeptuneOpenCypherQAChain

Chain for question-answering against a Neptune graph by generating openCypher statements.

chains.graph_qa.sparql.GraphSparqlQAChain

Question-answering against an RDF or OWL graph by generating SPARQL statements.

chains.hyde.base.HypotheticalDocumentEmbedder

Generate hypothetical document for query, and then embed that.

chains.llm.LLMChain

Chain to run queries against LLMs.

chains.llm_checker.base.LLMCheckerChain

Chain for question-answering with self-verification.

chains.llm_math.base.LLMMathChain

Chain that interprets a prompt and executes python code to do math.

chains.llm_requests.LLMRequestsChain

Chain that requests a URL and then uses an LLM to parse results.

chains.llm_summarization_checker.base.LLMSummarizationCheckerChain

Chain for question-answering with self-verification.

chains.mapreduce.MapReduceChain

Map-reduce chain.

chains.moderation.OpenAIModerationChain

Pass input through a moderation endpoint.

chains.natbot.base.NatBotChain

Implement an LLM driven browser.

chains.natbot.crawler.Crawler()

A crawler for web pages.

chains.natbot.crawler.ElementInViewPort

A typed dictionary containing information about elements in the viewport.

chains.openai_functions.citation_fuzzy_match.FactWithEvidence

Class representing a single statement.

chains.openai_functions.citation_fuzzy_match.QuestionAnswer

A question and its answer as a list of facts each one should have a source.

chains.openai_functions.openapi.SimpleRequestChain

Chain for making a simple request to an API endpoint.

chains.openai_functions.qa_with_structure.AnswerWithSources

An answer to the question, with sources.

chains.prompt_selector.BasePromptSelector

Base class for prompt selectors.

chains.prompt_selector.ConditionalPromptSelector

Prompt collection that goes through conditionals.

chains.qa_generation.base.QAGenerationChain

Base class for question-answer generation chains.

chains.qa_with_sources.base.BaseQAWithSourcesChain

Question answering chain with sources over documents.

chains.qa_with_sources.base.QAWithSourcesChain

Question answering with sources over documents.

chains.qa_with_sources.loading.LoadingCallable(...)

Interface for loading the combine documents chain.

chains.qa_with_sources.retrieval.RetrievalQAWithSourcesChain

Question-answering with sources over an index.

chains.qa_with_sources.vector_db.VectorDBQAWithSourcesChain

Question-answering with sources over a vector database.

chains.query_constructor.base.StructuredQueryOutputParser

Output parser that parses a structured query.

chains.query_constructor.ir.Comparator(value)

Enumerator of the comparison operators.

chains.query_constructor.ir.Comparison

A comparison to a value.

chains.query_constructor.ir.Expr

Base class for all expressions.

chains.query_constructor.ir.FilterDirective

A filtering expression.

chains.query_constructor.ir.Operation

A logical operation over other directives.

chains.query_constructor.ir.Operator(value)

Enumerator of the operations.

chains.query_constructor.ir.StructuredQuery

A structured query.

chains.query_constructor.ir.Visitor()

Defines interface for IR translation using visitor pattern.

chains.query_constructor.parser.ISO8601Date

A date in ISO 8601 format (YYYY-MM-DD).

chains.query_constructor.schema.AttributeInfo

Information about a data source attribute.

chains.retrieval_qa.base.BaseRetrievalQA

Base class for question-answering chains.

chains.retrieval_qa.base.RetrievalQA

Chain for question-answering against an index.

chains.retrieval_qa.base.VectorDBQA

Chain for question-answering against a vector database.

chains.router.base.MultiRouteChain

Use a single chain to route an input to one of multiple candidate chains.

chains.router.base.Route(destination, ...)

Create new instance of Route(destination, next_inputs)

chains.router.base.RouterChain

Chain that outputs the name of a destination chain and the inputs to it.

chains.router.embedding_router.EmbeddingRouterChain

Chain that uses embeddings to route between options.

chains.router.llm_router.LLMRouterChain

A router chain that uses an LLM chain to perform routing.

chains.router.llm_router.RouterOutputParser

Parser for output of router chain in the multi-prompt chain.

chains.router.multi_prompt.MultiPromptChain

A multi-route chain that uses an LLM router chain to choose amongst prompts.

chains.router.multi_retrieval_qa.MultiRetrievalQAChain

A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains.

chains.sequential.SequentialChain

Chain where the outputs of one chain feed directly into next.

chains.sequential.SimpleSequentialChain

Simple chain where the outputs of one step feed directly into next.

chains.sql_database.query.SQLInput

Input for a SQL Chain.

chains.sql_database.query.SQLInputWithTables

Input for a SQL Chain.

chains.transform.TransformChain

Chain that transforms the chain output.

Functions

chains.combine_documents.reduce.acollapse_docs(...)

Execute a collapse function on a set of documents and merge their metadatas.

chains.combine_documents.reduce.collapse_docs(...)

Execute a collapse function on a set of documents and merge their metadatas.

chains.combine_documents.reduce.split_list_of_docs(...)

Split Documents into subsets that each meet a cumulative length constraint.

chains.ernie_functions.base.convert_python_function_to_ernie_function(...)

Convert a Python function to an Ernie function-calling API compatible dict.

chains.ernie_functions.base.convert_to_ernie_function(...)

Convert a raw function/class to an Ernie function.

chains.ernie_functions.base.create_ernie_fn_chain(...)

[Legacy] Create an LLM chain that uses Ernie functions.

chains.ernie_functions.base.create_ernie_fn_runnable(...)

Create a runnable sequence that uses Ernie functions.

chains.ernie_functions.base.create_structured_output_chain(...)

[Legacy] Create an LLMChain that uses an Ernie function to get a structured output.

chains.ernie_functions.base.create_structured_output_runnable(...)

Create a runnable that uses an Ernie function to get a structured output.

chains.ernie_functions.base.get_ernie_output_parser(...)

Get the appropriate function output parser given the user functions.

chains.example_generator.generate_example(...)

Return another example given a list of examples for a prompt.

chains.graph_qa.cypher.construct_schema(...)

Filter the schema based on included or excluded types

chains.graph_qa.cypher.extract_cypher(text)

Extract Cypher code from a text.

chains.graph_qa.falkordb.extract_cypher(text)

Extract Cypher code from a text.

chains.graph_qa.neptune_cypher.extract_cypher(text)

Extract Cypher code from text using Regex.

chains.graph_qa.neptune_cypher.trim_query(query)

Trim the query to only include Cypher keywords.

chains.graph_qa.neptune_cypher.use_simple_prompt(llm)

Decides whether to use the simple prompt

chains.loading.load_chain(path, **kwargs)

Unified method for loading a chain from LangChainHub or local fs.

chains.loading.load_chain_from_config(...)

Load chain from Config Dict.

chains.openai_functions.base.convert_python_function_to_openai_function(...)

Convert a Python function to an OpenAI function-calling API compatible dict.

chains.openai_functions.base.convert_to_openai_function(...)

Convert a raw function/class to an OpenAI function.

chains.openai_functions.base.create_openai_fn_chain(...)

[Legacy] Create an LLM chain that uses OpenAI functions.

chains.openai_functions.base.create_openai_fn_runnable(...)

Create a runnable sequence that uses OpenAI functions.

chains.openai_functions.base.create_structured_output_chain(...)

[Legacy] Create an LLMChain that uses an OpenAI function to get a structured output.

chains.openai_functions.base.create_structured_output_runnable(...)

Create a runnable that uses an OpenAI function to get a structured output.

chains.openai_functions.base.get_openai_output_parser(...)

Get the appropriate function output parser given the user functions.

chains.openai_functions.citation_fuzzy_match.create_citation_fuzzy_match_chain(llm)

Create a citation fuzzy match chain.

chains.openai_functions.extraction.create_extraction_chain(...)

Creates a chain that extracts information from a passage.

chains.openai_functions.extraction.create_extraction_chain_pydantic(...)

Creates a chain that extracts information from a passage using pydantic schema.

chains.openai_functions.openapi.get_openapi_chain(spec)

Create a chain for querying an API from a OpenAPI spec.

chains.openai_functions.openapi.openapi_spec_to_openai_fn(spec)

Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI

chains.openai_functions.qa_with_structure.create_qa_with_sources_chain(llm)

Create a question answering chain that returns an answer with sources.

chains.openai_functions.qa_with_structure.create_qa_with_structure_chain(...)

Create a question answering chain that returns an answer with sources

chains.openai_functions.tagging.create_tagging_chain(...)

Creates a chain that extracts information from a passage

chains.openai_functions.tagging.create_tagging_chain_pydantic(...)

Creates a chain that extracts information from a passage

chains.openai_functions.utils.get_llm_kwargs(...)

Returns the kwargs for the LLMChain constructor.

chains.openai_tools.extraction.create_extraction_chain_pydantic(...)

chains.prompt_selector.is_chat_model(llm)

Check if the language model is a chat model.

chains.prompt_selector.is_llm(llm)

Check if the language model is a LLM.

chains.qa_with_sources.loading.load_qa_with_sources_chain(llm)

Load a question answering with sources chain.

chains.query_constructor.base.construct_examples(...)

Construct examples from input-output pairs.

chains.query_constructor.base.fix_filter_directive(...)

Fix invalid filter directive.

chains.query_constructor.base.get_query_constructor_prompt(...)

Create query construction prompt.

chains.query_constructor.base.load_query_constructor_chain(...)

Load a query constructor chain.

chains.query_constructor.base.load_query_constructor_runnable(...)

Load a query constructor runnable chain.

chains.query_constructor.parser.get_parser([...])

Returns a parser for the query language.

chains.query_constructor.parser.v_args(...)

Dummy decorator for when lark is not installed.

chains.sql_database.query.create_sql_query_chain(llm, db)

Create a chain that generates SQL queries.

langchain.chat_loaders

Chat Loaders load chat messages from common communications platforms.

Load chat messages from various communications platforms such as Facebook Messenger, Telegram, and WhatsApp. The loaded chat messages can be used for fine-tuning models.

Class hierarchy:

BaseChatLoader --> <name>ChatLoader  # Examples: WhatsAppChatLoader, IMessageChatLoader

Main helpers:

ChatSession

Classes

chat_loaders.base.BaseChatLoader()

Base class for chat loaders.

chat_loaders.facebook_messenger.FolderFacebookMessengerChatLoader(path)

Load Facebook Messenger chat data from a folder.

chat_loaders.facebook_messenger.SingleFileFacebookMessengerChatLoader(path)

Load Facebook Messenger chat data from a single file.

chat_loaders.gmail.GMailLoader(creds[, n, ...])

Load data from GMail.

chat_loaders.imessage.IMessageChatLoader([path])

Load chat sessions from the iMessage chat.db SQLite file.

chat_loaders.langsmith.LangSmithDatasetChatLoader(*, ...)

Load chat sessions from a LangSmith dataset with the "chat" data type.

chat_loaders.langsmith.LangSmithRunChatLoader(runs)

Load chat sessions from a list of LangSmith "llm" runs.

chat_loaders.slack.SlackChatLoader(path)

Load Slack conversations from a dump zip file.

chat_loaders.telegram.TelegramChatLoader(path)

Load telegram conversations to LangChain chat messages.

chat_loaders.whatsapp.WhatsAppChatLoader(path)

Load WhatsApp conversations from a dump zip file or directory.

Functions

chat_loaders.utils.map_ai_messages(...)

Convert messages from the specified 'sender' to AI messages.

chat_loaders.utils.map_ai_messages_in_session(...)

Convert messages from the specified 'sender' to AI messages.

chat_loaders.utils.merge_chat_runs(chat_sessions)

Merge chat runs together.

chat_loaders.utils.merge_chat_runs_in_session(...)

Merge chat runs together in a chat session.

langchain.chat_models

Chat Models are a variation on language models.

While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs.

Class hierarchy:

BaseLanguageModel --> BaseChatModel --> <name>  # Examples: ChatOpenAI, ChatGooglePalm

Main helpers:

AIMessage, BaseMessage, HumanMessage

Classes

chat_models.anthropic.ChatAnthropic

Anthropic chat large language models.

chat_models.anyscale.ChatAnyscale

Anyscale Chat large language models.

chat_models.azure_openai.AzureChatOpenAI

Azure OpenAI Chat Completion API.

chat_models.azureml_endpoint.AzureMLChatOnlineEndpoint

AzureML Chat models API.

chat_models.azureml_endpoint.LlamaContentFormatter()

Content formatter for LLaMA.

chat_models.baichuan.ChatBaichuan

Baichuan chat models API by Baichuan Intelligent Technology.

chat_models.baidu_qianfan_endpoint.QianfanChatEndpoint

Baidu Qianfan chat models.

chat_models.bedrock.BedrockChat

A chat model that uses the Bedrock API.

chat_models.bedrock.ChatPromptAdapter()

Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects.

chat_models.cohere.ChatCohere

Cohere chat large language models.

chat_models.ernie.ErnieBotChat

ERNIE-Bot large language model.

chat_models.everlyai.ChatEverlyAI

EverlyAI Chat large language models.

chat_models.fake.FakeListChatModel

Fake ChatModel for testing purposes.

chat_models.fake.FakeMessagesListChatModel

Fake ChatModel for testing purposes.

chat_models.fireworks.ChatFireworks

Fireworks Chat models.

chat_models.gigachat.GigaChat

GigaChat large language models API.

chat_models.google_palm.ChatGooglePalm

Google PaLM Chat models API.

chat_models.google_palm.ChatGooglePalmError

Error with the Google PaLM API.

chat_models.human.HumanInputChatModel

ChatModel which returns user input as the response.

chat_models.hunyuan.ChatHunyuan

Tencent Hunyuan chat models API by Tencent.

chat_models.javelin_ai_gateway.ChatJavelinAIGateway

Javelin AI Gateway chat models API.

chat_models.javelin_ai_gateway.ChatParams

Parameters for the Javelin AI Gateway LLM.

chat_models.jinachat.JinaChat

Jina AI Chat models API.

chat_models.konko.ChatKonko

ChatKonko Chat large language models API.

chat_models.litellm.ChatLiteLLM

A chat model that uses the LiteLLM API.

chat_models.litellm.ChatLiteLLMException

Error with the LiteLLM I/O library

chat_models.minimax.MiniMaxChat

Wrapper around Minimax large language models.

chat_models.mlflow_ai_gateway.ChatMLflowAIGateway

MLflow AI Gateway chat models API.

chat_models.mlflow_ai_gateway.ChatParams

Parameters for the MLflow AI Gateway LLM.

chat_models.ollama.ChatOllama

Ollama locally runs large language models.

chat_models.openai.ChatOpenAI

OpenAI Chat large language models API.

chat_models.pai_eas_endpoint.PaiEasChatEndpoint

Eas LLM Service chat model API.

chat_models.promptlayer_openai.PromptLayerChatOpenAI

PromptLayer and OpenAI Chat large language models API.

chat_models.tongyi.ChatTongyi

Alibaba Tongyi Qwen chat models API.

chat_models.vertexai.ChatVertexAI

Vertex AI Chat large language models API.

chat_models.yandex.ChatYandexGPT

Wrapper around YandexGPT large language models.

Functions

chat_models.anthropic.convert_messages_to_prompt_anthropic(...)

Format a list of messages into a full prompt for the Anthropic model

chat_models.baidu_qianfan_endpoint.convert_message_to_dict(message)

Convert a message to a dictionary that can be passed to the API.

chat_models.cohere.get_cohere_chat_request(...)

Get the request for the Cohere chat API.

chat_models.cohere.get_role(message)

Get the role of the message.

chat_models.fireworks.acompletion_with_retry(...)

Use tenacity to retry the async completion call.

chat_models.fireworks.acompletion_with_retry_streaming(...)

Use tenacity to retry the completion call for streaming.

chat_models.fireworks.completion_with_retry(...)

Use tenacity to retry the completion call.

chat_models.fireworks.conditional_decorator(...)

chat_models.fireworks.convert_dict_to_message(_dict)

Convert a dict response to a message.

chat_models.google_palm.achat_with_retry(...)

Use tenacity to retry the async completion call.

chat_models.google_palm.chat_with_retry(llm, ...)

Use tenacity to retry the completion call.

chat_models.jinachat.acompletion_with_retry(...)

Use tenacity to retry the async completion call.

chat_models.litellm.acompletion_with_retry(llm)

Use tenacity to retry the async completion call.

chat_models.meta.convert_messages_to_prompt_llama(...)

chat_models.openai.acompletion_with_retry(llm)

Use tenacity to retry the async completion call.

chat_models.tongyi.convert_dict_to_message(_dict)

chat_models.tongyi.convert_message_to_dict(message)

langchain.docstore

Docstores are classes to store and load Documents.

The Docstore is a simplified version of the Document Loader.

Class hierarchy:

Docstore --> <name> # Examples: InMemoryDocstore, Wikipedia

Main helpers:

Document, AddableMixin

Classes

docstore.arbitrary_fn.DocstoreFn(lookup_fn)

Langchain Docstore via arbitrary lookup function.

docstore.base.AddableMixin()

Mixin class that supports adding texts.

docstore.base.Docstore()

Interface to access to place that stores documents.

docstore.in_memory.InMemoryDocstore([_dict])

Simple in memory docstore in the form of a dict.

docstore.wikipedia.Wikipedia()

Wrapper around wikipedia API.

langchain.document_loaders

Document Loaders are classes to load Documents.

Document Loaders are usually used to load a lot of Documents in a single run.

Class hierarchy:

BaseLoader --> <name>Loader  # Examples: TextLoader, UnstructuredFileLoader

Main helpers:

Document, <name>TextSplitter

Classes

document_loaders.acreom.AcreomLoader(path[, ...])

Load acreom vault from a directory.

document_loaders.airbyte.AirbyteCDKLoader(...)

Load with an Airbyte source connector implemented using the CDK.

document_loaders.airbyte.AirbyteGongLoader(...)

Load from Gong using an Airbyte source connector.

document_loaders.airbyte.AirbyteHubspotLoader(...)

Load from Hubspot using an Airbyte source connector.

document_loaders.airbyte.AirbyteSalesforceLoader(...)

Load from Salesforce using an Airbyte source connector.

document_loaders.airbyte.AirbyteShopifyLoader(...)

Load from Shopify using an Airbyte source connector.

document_loaders.airbyte.AirbyteStripeLoader(...)

Load from Stripe using an Airbyte source connector.

document_loaders.airbyte.AirbyteTypeformLoader(...)

Load from Typeform using an Airbyte source connector.

document_loaders.airbyte.AirbyteZendeskSupportLoader(...)

Load from Zendesk Support using an Airbyte source connector.

document_loaders.airbyte_json.AirbyteJSONLoader(...)

Load local Airbyte json files.

document_loaders.airtable.AirtableLoader(...)

Load the Airtable tables.

document_loaders.apify_dataset.ApifyDatasetLoader

Load datasets from Apify web scraping, crawling, and data extraction platform.

document_loaders.arcgis_loader.ArcGISLoader(layer)

Load records from an ArcGIS FeatureLayer.

document_loaders.arxiv.ArxivLoader(query[, ...])

Load a query result from Arxiv.

document_loaders.assemblyai.AssemblyAIAudioTranscriptLoader(...)

Loader for AssemblyAI audio transcripts.

document_loaders.assemblyai.TranscriptFormat(value)

Transcript format to use for the document loader.

document_loaders.async_html.AsyncHtmlLoader(...)

Load HTML asynchronously.

document_loaders.azlyrics.AZLyricsLoader([...])

Load AZLyrics webpages.

document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(...)

Load from Azure Blob Storage container.

document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader(...)

Load from Azure Blob Storage files.

document_loaders.baiducloud_bos_directory.BaiduBOSDirectoryLoader(...)

Load from Baidu BOS directory.

document_loaders.baiducloud_bos_file.BaiduBOSFileLoader(...)

Load from Baidu Cloud BOS file.

document_loaders.base.BaseBlobParser()

Abstract interface for blob parsers.

document_loaders.base.BaseLoader()

Interface for Document Loader.

document_loaders.base_o365.O365BaseLoader

Base class for all loaders that uses O365 Package

document_loaders.bibtex.BibtexLoader(...[, ...])

Load a bibtex file.

document_loaders.bigquery.BigQueryLoader(query)

Load from the Google Cloud Platform BigQuery.

document_loaders.bilibili.BiliBiliLoader(...)

Load BiliBili video transcripts.

document_loaders.blackboard.BlackboardLoader(...)

Load a Blackboard course.

document_loaders.blob_loaders.file_system.FileSystemBlobLoader(path, *)

Load blobs in the local file system.

document_loaders.blob_loaders.schema.Blob

Blob represents raw data by either reference or value.

document_loaders.blob_loaders.schema.BlobLoader()

Abstract interface for blob loaders implementation.

document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader(...)

Load YouTube urls as audio file(s).

document_loaders.blockchain.BlockchainDocumentLoader(...)

Load elements from a blockchain smart contract.

document_loaders.blockchain.BlockchainType(value)

Enumerator of the supported blockchains.

document_loaders.brave_search.BraveSearchLoader(...)

Load with Brave Search engine.

document_loaders.browserless.BrowserlessLoader(...)

Load webpages with Browserless /content endpoint.

document_loaders.chatgpt.ChatGPTLoader(log_file)

Load conversations from exported ChatGPT data.

document_loaders.chromium.AsyncChromiumLoader(urls)

Scrape HTML pages from URLs using a headless instance of the Chromium.

document_loaders.college_confidential.CollegeConfidentialLoader([...])

Load College Confidential webpages.

document_loaders.concurrent.ConcurrentLoader(...)

Load and pars Documents concurrently.

document_loaders.confluence.ConfluenceLoader(url)

Load Confluence pages.

document_loaders.confluence.ContentFormat(value)

Enumerator of the content formats of Confluence page.

document_loaders.conllu.CoNLLULoader(file_path)

Load CoNLL-U files.

document_loaders.csv_loader.CSVLoader(file_path)

Load a CSV file into a list of Documents.

document_loaders.csv_loader.UnstructuredCSVLoader(...)

Load CSV files using Unstructured.

document_loaders.cube_semantic.CubeSemanticLoader(...)

Load Cube semantic layer metadata.

document_loaders.datadog_logs.DatadogLogsLoader(...)

Load Datadog logs.

document_loaders.dataframe.BaseDataFrameLoader(...)

Initialize with dataframe object.

document_loaders.dataframe.DataFrameLoader(...)

Load Pandas DataFrame.

document_loaders.diffbot.DiffbotLoader(...)

Load Diffbot json file.

document_loaders.directory.DirectoryLoader(...)

Load from a directory.

document_loaders.discord.DiscordChatLoader(...)

Load Discord chat logs.

document_loaders.docugami.DocugamiLoader

Load from Docugami.

document_loaders.docusaurus.DocusaurusLoader(url)

Loader that leverages the SitemapLoader to loop through the generated pages of a Docusaurus Documentation website and extracts the content by looking for specific HTML tags.

document_loaders.dropbox.DropboxLoader

Load files from Dropbox.

document_loaders.duckdb_loader.DuckDBLoader(query)

Load from DuckDB.

document_loaders.email.OutlookMessageLoader(...)

Loads Outlook Message files using extract_msg.

document_loaders.email.UnstructuredEmailLoader(...)

Load email files using Unstructured.

document_loaders.embaas.BaseEmbaasLoader

Base loader for Embaas document extraction API.

document_loaders.embaas.EmbaasBlobLoader

Load Embaas blob.

document_loaders.embaas.EmbaasDocumentExtractionParameters

Parameters for the embaas document extraction API.

document_loaders.embaas.EmbaasDocumentExtractionPayload

Payload for the Embaas document extraction API.

document_loaders.embaas.EmbaasLoader

Load from Embaas.

document_loaders.epub.UnstructuredEPubLoader(...)

Load EPub files using Unstructured.

document_loaders.etherscan.EtherscanLoader(...)

Load transactions from Ethereum mainnet.

document_loaders.evernote.EverNoteLoader(...)

Load from EverNote.

document_loaders.excel.UnstructuredExcelLoader(...)

Load Microsoft Excel files using Unstructured.

document_loaders.facebook_chat.FacebookChatLoader(path)

Load Facebook Chat messages directory dump.

document_loaders.fauna.FaunaLoader(query, ...)

Load from FaunaDB.

document_loaders.figma.FigmaFileLoader(...)

Load Figma file.

document_loaders.gcs_directory.GCSDirectoryLoader(...)

Load from GCS directory.

document_loaders.gcs_file.GCSFileLoader(...)

Load from GCS file.

document_loaders.generic.GenericLoader(...)

Generic Document Loader.

document_loaders.geodataframe.GeoDataFrameLoader(...)

Load geopandas Dataframe.

document_loaders.git.GitLoader(repo_path[, ...])

Load Git repository files.

document_loaders.gitbook.GitbookLoader(web_page)

Load GitBook data.

document_loaders.github.BaseGitHubLoader

Load GitHub repository Issues.

document_loaders.github.GitHubIssuesLoader

Load issues of a GitHub repository.

document_loaders.google_speech_to_text.GoogleSpeechToTextLoader(...)

Loader for Google Cloud Speech-to-Text audio transcripts.

document_loaders.googledrive.GoogleDriveLoader

Load Google Docs from Google Drive.

document_loaders.gutenberg.GutenbergLoader(...)

Load from Gutenberg.org.

document_loaders.helpers.FileEncoding(...)

File encoding as the NamedTuple.

document_loaders.hn.HNLoader([web_path, ...])

Load Hacker News data.

document_loaders.html.UnstructuredHTMLLoader(...)

Load HTML files using Unstructured.

document_loaders.html_bs.BSHTMLLoader(file_path)

Load HTML files and parse them with beautiful soup.

document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path)

Load from Hugging Face Hub datasets.

document_loaders.ifixit.IFixitLoader(web_path)

Load iFixit repair guides, device wikis and answers.

document_loaders.image.UnstructuredImageLoader(...)

Load PNG and JPG files using Unstructured.

document_loaders.image_captions.ImageCaptionLoader(images)

Load image captions.

document_loaders.imsdb.IMSDbLoader([...])

Load IMSDb webpages.

document_loaders.iugu.IuguLoader(resource[, ...])

Load from IUGU.

document_loaders.joplin.JoplinLoader([...])

Load notes from Joplin.

document_loaders.json_loader.JSONLoader(...)

Load a JSON file using a jq schema.

document_loaders.lakefs.LakeFSClient(...)

document_loaders.lakefs.LakeFSLoader(...[, ...])

Load from lakeFS.

document_loaders.lakefs.UnstructuredLakeFSLoader(...)

Args:

document_loaders.larksuite.LarkSuiteDocLoader(...)

Load from LarkSuite (FeiShu).

document_loaders.markdown.UnstructuredMarkdownLoader(...)

Load Markdown files using Unstructured.

document_loaders.mastodon.MastodonTootsLoader(...)

Load the Mastodon 'toots'.

document_loaders.max_compute.MaxComputeLoader(...)

Load from Alibaba Cloud MaxCompute table.

document_loaders.mediawikidump.MWDumpLoader(...)

Load MediaWiki dump from an XML file.

document_loaders.merge.MergedDataLoader(loaders)

Merge documents from a list of loaders

document_loaders.mhtml.MHTMLLoader(file_path)

Parse MHTML files with BeautifulSoup.

document_loaders.modern_treasury.ModernTreasuryLoader(...)

Load from Modern Treasury.

document_loaders.mongodb.MongodbLoader(...)

Load MongoDB documents.

document_loaders.news.NewsURLLoader(urls[, ...])

Load news articles from URLs using Unstructured.

document_loaders.notebook.NotebookLoader(path)

Load Jupyter notebook (.ipynb) files.

document_loaders.notion.NotionDirectoryLoader(path, *)

Load Notion directory dump.

document_loaders.notiondb.NotionDBLoader(...)

Load from Notion DB.

document_loaders.nuclia.NucliaLoader(path, ...)

Load from any file type using Nuclia Understanding API.

document_loaders.obs_directory.OBSDirectoryLoader(...)

Load from Huawei OBS directory.

document_loaders.obs_file.OBSFileLoader(...)

Load from the Huawei OBS file.

document_loaders.obsidian.ObsidianLoader(path)

Load Obsidian files from directory.

document_loaders.odt.UnstructuredODTLoader(...)

Load OpenOffice ODT files using Unstructured.

document_loaders.onedrive.OneDriveLoader

Load from Microsoft OneDrive.

document_loaders.onedrive_file.OneDriveFileLoader

Load a file from Microsoft OneDrive.

document_loaders.open_city_data.OpenCityDataLoader(...)

Load from Open City.

document_loaders.org_mode.UnstructuredOrgModeLoader(...)

Load Org-Mode files using Unstructured.

document_loaders.parsers.audio.OpenAIWhisperParser([...])

Transcribe and parse audio files.

document_loaders.parsers.audio.OpenAIWhisperParserLocal([...])

Transcribe and parse audio files with OpenAI Whisper model.

document_loaders.parsers.audio.YandexSTTParser(*)

Transcribe and parse audio files.

document_loaders.parsers.docai.DocAIParser(*)

Google Cloud Document AI parser.

document_loaders.parsers.docai.DocAIParsingResults(...)

A dataclass to store Document AI parsing results.

document_loaders.parsers.generic.MimeTypeBasedParser(...)

Parser that uses mime-types to parse a blob.

document_loaders.parsers.grobid.GrobidParser(...)

Load article PDF files using Grobid.

document_loaders.parsers.grobid.ServerUnavailableException

Exception raised when the Grobid server is unavailable.

document_loaders.parsers.html.bs4.BS4HTMLParser(*)

Pparse HTML files using Beautiful Soup.

document_loaders.parsers.language.cobol.CobolSegmenter(code)

Code segmenter for COBOL.

document_loaders.parsers.language.code_segmenter.CodeSegmenter(code)

Abstract class for the code segmenter.

document_loaders.parsers.language.javascript.JavaScriptSegmenter(code)

Code segmenter for JavaScript.

document_loaders.parsers.language.language_parser.LanguageParser([...])

Parse using the respective programming language syntax.

document_loaders.parsers.language.python.PythonSegmenter(code)

Code segmenter for Python.

document_loaders.parsers.msword.MsWordParser()

Parse the Microsoft Word documents from a blob.

document_loaders.parsers.pdf.AmazonTextractPDFParser([...])

Send PDF files to Amazon Textract and parse them.

document_loaders.parsers.pdf.DocumentIntelligenceParser(...)

Loads a PDF with Azure Document Intelligence (formerly Forms Recognizer) and chunks at character level.

document_loaders.parsers.pdf.PDFMinerParser([...])

Parse PDF using PDFMiner.

document_loaders.parsers.pdf.PDFPlumberParser([...])

Parse PDF with PDFPlumber.

document_loaders.parsers.pdf.PyMuPDFParser([...])

Parse PDF using PyMuPDF.

document_loaders.parsers.pdf.PyPDFParser([...])

Load PDF using pypdf

document_loaders.parsers.pdf.PyPDFium2Parser([...])

Parse PDF with PyPDFium2.

document_loaders.parsers.txt.TextParser()

Parser for text blobs.

document_loaders.pdf.AmazonTextractPDFLoader(...)

Load PDF files from a local file system, HTTP or S3.

document_loaders.pdf.BasePDFLoader(file_path, *)

Base Loader class for PDF files.

document_loaders.pdf.DocumentIntelligenceLoader(...)

Loads a PDF with Azure Document Intelligence

document_loaders.pdf.MathpixPDFLoader(file_path)

Load PDF files using Mathpix service.

document_loaders.pdf.OnlinePDFLoader(...[, ...])

Load online PDF.

document_loaders.pdf.PDFMinerLoader(file_path, *)

Load PDF files using PDFMiner.

document_loaders.pdf.PDFMinerPDFasHTMLLoader(...)

Load PDF files as HTML content using PDFMiner.

document_loaders.pdf.PDFPlumberLoader(file_path)

Load PDF files using pdfplumber.

document_loaders.pdf.PyMuPDFLoader(file_path, *)

Load PDF files using PyMuPDF.

document_loaders.pdf.PyPDFDirectoryLoader(path)

Load a directory with PDF files using pypdf and chunks at character level.

document_loaders.pdf.PyPDFLoader(file_path)

Load PDF using pypdf into list of documents.

document_loaders.pdf.PyPDFium2Loader(...[, ...])

Load PDF using pypdfium2 and chunks at character level.

document_loaders.pdf.UnstructuredPDFLoader(...)

Load PDF files using Unstructured.

document_loaders.polars_dataframe.PolarsDataFrameLoader(...)

Load Polars DataFrame.

document_loaders.powerpoint.UnstructuredPowerPointLoader(...)

Load Microsoft PowerPoint files using Unstructured.

document_loaders.psychic.PsychicLoader(...)

Load from Psychic.dev.

document_loaders.pubmed.PubMedLoader(query)

Load from the PubMed biomedical library.

document_loaders.pyspark_dataframe.PySparkDataFrameLoader([...])

Load PySpark DataFrames.

document_loaders.python.PythonLoader(file_path)

Load Python files, respecting any non-default encoding if specified.

document_loaders.quip.QuipLoader(api_url, ...)

Load Quip pages.

document_loaders.readthedocs.ReadTheDocsLoader(path)

Load ReadTheDocs documentation directory.

document_loaders.recursive_url_loader.RecursiveUrlLoader(url)

Load all child links from a URL page.

document_loaders.reddit.RedditPostsLoader(...)

Load Reddit posts.

document_loaders.roam.RoamLoader(path)

Load Roam files from a directory.

document_loaders.rocksetdb.ColumnNotFoundError(...)

Column not found error.

document_loaders.rocksetdb.RocksetLoader(...)

Load from a Rockset database.

document_loaders.rspace.RSpaceLoader(global_id)

Loads content from RSpace notebooks, folders, documents or PDF Gallery files into Langchain documents.

document_loaders.rss.RSSFeedLoader([urls, ...])

Load news articles from RSS feeds using Unstructured.

document_loaders.rst.UnstructuredRSTLoader(...)

Load RST files using Unstructured.

document_loaders.rtf.UnstructuredRTFLoader(...)

Load RTF files using Unstructured.

document_loaders.s3_directory.S3DirectoryLoader(bucket)

Load from Amazon AWS S3 directory.

document_loaders.s3_file.S3FileLoader(...[, ...])

Load from Amazon AWS S3 file.

document_loaders.sharepoint.SharePointLoader

Load from SharePoint.

document_loaders.sitemap.SitemapLoader(web_path)

Load a sitemap and its URLs.

document_loaders.slack_directory.SlackDirectoryLoader(...)

Load from a Slack directory dump.

document_loaders.snowflake_loader.SnowflakeLoader(...)

Load from Snowflake API.

document_loaders.spreedly.SpreedlyLoader(...)

Load from Spreedly API.

document_loaders.srt.SRTLoader(file_path)

Load .srt (subtitle) files.

document_loaders.stripe.StripeLoader(resource)

Load from Stripe API.

document_loaders.telegram.TelegramChatApiLoader([...])

Load Telegram chat json directory dump.

document_loaders.telegram.TelegramChatFileLoader(path)

Load from Telegram chat dump.

document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader(...)

Load from Tencent Cloud COS directory.

document_loaders.tencent_cos_file.TencentCOSFileLoader(...)

Load from Tencent Cloud COS file.

document_loaders.tensorflow_datasets.TensorflowDatasetLoader(...)

Load from TensorFlow Dataset.

document_loaders.text.TextLoader(file_path)

Load text file.

document_loaders.tomarkdown.ToMarkdownLoader(...)

Load HTML using 2markdown API.

document_loaders.toml.TomlLoader(source)

Load TOML files.

document_loaders.trello.TrelloLoader(client, ...)

Load cards from a Trello board.

document_loaders.tsv.UnstructuredTSVLoader(...)

Load TSV files using Unstructured.

document_loaders.twitter.TwitterTweetLoader(...)

Load Twitter tweets.

document_loaders.unstructured.UnstructuredAPIFileIOLoader(file)

Load files using Unstructured API.

document_loaders.unstructured.UnstructuredAPIFileLoader([...])

Load files using Unstructured API.

document_loaders.unstructured.UnstructuredBaseLoader([...])

Base Loader that uses Unstructured.

document_loaders.unstructured.UnstructuredFileIOLoader(file)

Load files using Unstructured.

document_loaders.unstructured.UnstructuredFileLoader(...)

Load files using Unstructured.

document_loaders.url.UnstructuredURLLoader(urls)

Load files from remote URLs using Unstructured.

document_loaders.url_playwright.PlaywrightEvaluator()

Abstract base class for all evaluators.

document_loaders.url_playwright.PlaywrightURLLoader(urls)

Load HTML pages with Playwright and parse with Unstructured.

document_loaders.url_playwright.UnstructuredHtmlEvaluator([...])

Evaluates the page HTML content using the unstructured library.

document_loaders.url_selenium.SeleniumURLLoader(urls)

Load HTML pages with Selenium and parse with Unstructured.

document_loaders.weather.WeatherDataLoader(...)

Load weather data with Open Weather Map API.

document_loaders.web_base.WebBaseLoader([...])

Load HTML pages using urllib and parse them with `BeautifulSoup'.

document_loaders.whatsapp_chat.WhatsAppChatLoader(path)

Load WhatsApp messages text file.

document_loaders.wikipedia.WikipediaLoader(query)

Load from Wikipedia.

document_loaders.word_document.Docx2txtLoader(...)

Load DOCX file using docx2txt and chunks at character level.

document_loaders.word_document.UnstructuredWordDocumentLoader(...)

Load Microsoft Word file using Unstructured.

document_loaders.xml.UnstructuredXMLLoader(...)

Load XML file using Unstructured.

document_loaders.xorbits.XorbitsLoader(...)

Load Xorbits DataFrame.

document_loaders.youtube.GoogleApiClient([...])

Generic Google API Client.

document_loaders.youtube.GoogleApiYoutubeLoader(...)

Load all Videos from a YouTube Channel.

document_loaders.youtube.YoutubeLoader(video_id)

Load YouTube transcripts.

Functions

document_loaders.base_o365.fetch_mime_types(...)

Fetch the mime types for the specified file types.

document_loaders.chatgpt.concatenate_rows(...)

Combine message information in a readable format ready to be used.

document_loaders.facebook_chat.concatenate_rows(row)

Combine message information in a readable format ready to be used.

document_loaders.helpers.detect_file_encodings(...)

Try to detect the file encoding.

document_loaders.notebook.concatenate_cells(...)

Combine cells information in a readable format ready to be used.

document_loaders.notebook.remove_newlines(x)

Recursively remove newlines, no matter the data structure they are stored in.

document_loaders.parsers.pdf.extract_from_images_with_rapidocr(images)

Extract text from images with RapidOCR.

document_loaders.parsers.registry.get_parser(...)

Get a parser by parser name.

document_loaders.rocksetdb.default_joiner(docs)

Default joiner for content columns.

document_loaders.telegram.concatenate_rows(row)

Combine message information in a readable format ready to be used.

document_loaders.telegram.text_to_docs(text)

Convert a string or list of strings to a list of Documents with metadata.

document_loaders.unstructured.get_elements_from_api([...])

Retrieve a list of elements from the Unstructured API.

document_loaders.unstructured.satisfies_min_unstructured_version(...)

Check if the installed Unstructured version exceeds the minimum version for the feature in question.

document_loaders.unstructured.validate_unstructured_version(...)

Raise an error if the Unstructured version does not exceed the specified minimum.

document_loaders.whatsapp_chat.concatenate_rows(...)

Combine message information in a readable format ready to be used.

langchain.document_transformers

Document Transformers are classes to transform Documents.

Document Transformers usually used to transform a lot of Documents in a single run.

Class hierarchy:

BaseDocumentTransformer --> <name>  # Examples: DoctranQATransformer, DoctranTextTranslator

Main helpers:

Document

Classes

document_transformers.beautiful_soup_transformer.BeautifulSoupTransformer()

Transform HTML content by extracting specific tags and removing unwanted ones.

document_transformers.doctran_text_extract.DoctranPropertyExtractor(...)

Extract properties from text documents using doctran.

document_transformers.doctran_text_qa.DoctranQATransformer([...])

Extract QA from text documents using doctran.

document_transformers.doctran_text_translate.DoctranTextTranslator([...])

Translate text documents using doctran.

document_transformers.embeddings_redundant_filter.EmbeddingsClusteringFilter

Perform K-means clustering on document vectors.

document_transformers.embeddings_redundant_filter.EmbeddingsRedundantFilter

Filter that drops redundant documents by comparing their embeddings.

document_transformers.google_translate.GoogleTranslateTransformer(...)

Translate text documents using Google Cloud Translation.

document_transformers.html2text.Html2TextTransformer([...])

Replace occurrences of a particular search pattern with a replacement string

document_transformers.long_context_reorder.LongContextReorder

Lost in the middle: Performance degrades when models must access relevant information in the middle of long contexts.

document_transformers.nuclia_text_transform.NucliaTextTransformer(nua)

The Nuclia Understanding API splits into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all sentences.

document_transformers.openai_functions.OpenAIMetadataTagger

Extract metadata tags from document contents using OpenAI functions.

Functions

document_transformers.beautiful_soup_transformer.get_navigable_strings(element)

document_transformers.embeddings_redundant_filter.get_stateful_documents(...)

Convert a list of documents to a list of documents with state.

document_transformers.openai_functions.create_metadata_tagger(...)

Create a DocumentTransformer that uses an OpenAI function chain to automatically

langchain.embeddings

Embedding models are wrappers around embedding models from different APIs and services.

Embedding models can be LLMs or not.

Class hierarchy:

Embeddings --> <name>Embeddings  # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings

Classes

embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding

Aleph Alpha's asymmetric semantic embedding.

embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding

The symmetric version of the Aleph Alpha's semantic embeddings.

embeddings.awa.AwaEmbeddings

Embedding documents and queries with Awa DB.

embeddings.azure_openai.AzureOpenAIEmbeddings

Azure OpenAI Embeddings API.

embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint

Baidu Qianfan Embeddings embedding models.

embeddings.bedrock.BedrockEmbeddings

Bedrock embedding models.

embeddings.cache.CacheBackedEmbeddings(...)

Interface for caching results from embedding models.

embeddings.clarifai.ClarifaiEmbeddings

Clarifai embedding models.

embeddings.cohere.CohereEmbeddings

Cohere embedding models.

embeddings.dashscope.DashScopeEmbeddings

DashScope embedding models.

embeddings.deepinfra.DeepInfraEmbeddings

Deep Infra's embedding inference service.

embeddings.edenai.EdenAiEmbeddings

EdenAI embedding.

embeddings.elasticsearch.ElasticsearchEmbeddings(...)

Elasticsearch embedding models.

embeddings.embaas.EmbaasEmbeddings

Embaas's embedding service.

embeddings.embaas.EmbaasEmbeddingsPayload

Payload for the Embaas embeddings API.

embeddings.ernie.ErnieEmbeddings

Ernie Embeddings V1 embedding models.

embeddings.fake.DeterministicFakeEmbedding

Fake embedding model that always returns the same embedding vector for the same text.

embeddings.fake.FakeEmbeddings

Fake embedding model.

embeddings.fastembed.FastEmbedEmbeddings

Qdrant FastEmbedding models.

embeddings.google_palm.GooglePalmEmbeddings

Google's PaLM Embeddings APIs.

embeddings.gpt4all.GPT4AllEmbeddings

GPT4All embedding models.

embeddings.gradient_ai.GradientEmbeddings

Gradient.ai Embedding models.

embeddings.gradient_ai.TinyAsyncGradientEmbeddingClient([...])

A helper tool to embed Gradient.

embeddings.huggingface.HuggingFaceBgeEmbeddings

HuggingFace BGE sentence_transformers embedding models.

embeddings.huggingface.HuggingFaceEmbeddings

HuggingFace sentence_transformers embedding models.

embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings

Embed texts using the HuggingFace API.

embeddings.huggingface.HuggingFaceInstructEmbeddings

Wrapper around sentence_transformers embedding models.

embeddings.huggingface_hub.HuggingFaceHubEmbeddings

HuggingFaceHub embedding models.

embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings

Wrapper around embeddings LLMs in the Javelin AI Gateway.

embeddings.jina.JinaEmbeddings

Jina embedding models.

embeddings.johnsnowlabs.JohnSnowLabsEmbeddings

JohnSnowLabs embedding models

embeddings.llamacpp.LlamaCppEmbeddings

llama.cpp embedding models.

embeddings.llm_rails.LLMRailsEmbeddings

LLMRails embedding models.

embeddings.localai.LocalAIEmbeddings

LocalAI embedding models.

embeddings.minimax.MiniMaxEmbeddings

MiniMax's embedding service.

embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings

Wrapper around embeddings LLMs in the MLflow AI Gateway.

embeddings.modelscope_hub.ModelScopeEmbeddings

ModelScopeHub embedding models.

embeddings.mosaicml.MosaicMLInstructorEmbeddings

MosaicML embedding service.

embeddings.nlpcloud.NLPCloudEmbeddings

NLP Cloud embedding models.

embeddings.octoai_embeddings.OctoAIEmbeddings

OctoAI Compute Service embedding models.

embeddings.ollama.OllamaEmbeddings

Ollama locally runs large language models.

embeddings.openai.OpenAIEmbeddings

OpenAI embedding models.

embeddings.sagemaker_endpoint.EmbeddingsContentHandler()

Content handler for LLM class.

embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings

Custom Sagemaker Inference Endpoints.

embeddings.self_hosted.SelfHostedEmbeddings

Custom embedding models on self-hosted remote hardware.

embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings

HuggingFace embedding models on self-hosted remote hardware.

embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceInstructEmbeddings

HuggingFace InstructEmbedding models on self-hosted remote hardware.

embeddings.spacy_embeddings.SpacyEmbeddings

Embeddings by SpaCy models.

embeddings.tensorflow_hub.TensorflowHubEmbeddings

TensorflowHub embedding models.

embeddings.vertexai.VertexAIEmbeddings

Google Cloud VertexAI embedding models.

embeddings.voyageai.VoyageEmbeddings

Voyage embedding models.

embeddings.xinference.XinferenceEmbeddings([...])

Xinference embedding models.

Functions

embeddings.dashscope.embed_with_retry(...)

Use tenacity to retry the embedding call.

embeddings.google_palm.embed_with_retry(...)

Use tenacity to retry the completion call.

embeddings.localai.async_embed_with_retry(...)

Use tenacity to retry the embedding call.

embeddings.localai.embed_with_retry(...)

Use tenacity to retry the embedding call.

embeddings.minimax.embed_with_retry(...)

Use tenacity to retry the completion call.

embeddings.openai.async_embed_with_retry(...)

Use tenacity to retry the embedding call.

embeddings.openai.embed_with_retry(...)

Use tenacity to retry the embedding call.

embeddings.self_hosted_hugging_face.load_embedding_model(...)

Load the embedding model.

embeddings.voyageai.embed_with_retry(...)

Use tenacity to retry the embedding call.

langchain.evaluation

Evaluation chains for grading LLM and Chain outputs.

This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as language models and chains.

Loading an evaluator

To load an evaluator, you can use the load_evaluators or load_evaluator functions with the names of the evaluators to load.

from langchain.evaluation import load_evaluator

evaluator = load_evaluator("qa")
evaluator.evaluate_strings(
    prediction="We sold more than 40,000 units last week",
    input="How many units did we sell last week?",
    reference="We sold 32,378 units",
)

The evaluator must be one of EvaluatorType.

Datasets

To load one of the LangChain HuggingFace datasets, you can use the load_dataset function with the name of the dataset to load.

from langchain.evaluation import load_dataset
ds = load_dataset("llm-math")

Some common use cases for evaluation include:

Low-level API

These evaluators implement one of the following interfaces:

  • StringEvaluator: Evaluate a prediction string against a reference label and/or input context.

  • PairwiseStringEvaluator: Evaluate two prediction strings against each other. Useful for scoring preferences, measuring similarity between two chain or llm agents, or comparing outputs on similar inputs.

  • AgentTrajectoryEvaluator Evaluate the full sequence of actions taken by an agent.

These interfaces enable easier composability and usage within a higher level evaluation framework.

Classes

evaluation.agents.trajectory_eval_chain.TrajectoryEval

A named tuple containing the score and reasoning for a trajectory.

evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain

A chain for evaluating ReAct style agents.

evaluation.agents.trajectory_eval_chain.TrajectoryOutputParser

Trajectory output parser.

evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain

A chain for comparing two outputs, such as the outputs

evaluation.comparison.eval_chain.PairwiseStringEvalChain

A chain for comparing two outputs, such as the outputs

evaluation.comparison.eval_chain.PairwiseStringResultOutputParser

A parser for the output of the PairwiseStringEvalChain.

evaluation.criteria.eval_chain.Criteria(value)

A Criteria to evaluate.

evaluation.criteria.eval_chain.CriteriaEvalChain

LLM Chain for evaluating runs against criteria.

evaluation.criteria.eval_chain.CriteriaResultOutputParser

A parser for the output of the CriteriaEvalChain.

evaluation.criteria.eval_chain.LabeledCriteriaEvalChain

Criteria evaluation chain that requires references.

evaluation.embedding_distance.base.EmbeddingDistance(value)

Embedding Distance Metric.

evaluation.embedding_distance.base.EmbeddingDistanceEvalChain

Use embedding distances to score semantic difference between a prediction and reference.

evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain

Use embedding distances to score semantic difference between two predictions.

evaluation.exact_match.base.ExactMatchStringEvaluator(*)

Compute an exact match between the prediction and the reference.

evaluation.parsing.base.JsonEqualityEvaluator([...])

Evaluates whether the prediction is equal to the reference after

evaluation.parsing.base.JsonValidityEvaluator(...)

Evaluates whether the prediction is valid JSON.

evaluation.parsing.json_distance.JsonEditDistanceEvaluator([...])

An evaluator that calculates the edit distance between JSON strings.

evaluation.parsing.json_schema.JsonSchemaEvaluator(...)

An evaluator that validates a JSON prediction against a JSON schema reference.

evaluation.qa.eval_chain.ContextQAEvalChain

LLM Chain for evaluating QA w/o GT based on context

evaluation.qa.eval_chain.CotQAEvalChain

LLM Chain for evaluating QA using chain of thought reasoning.

evaluation.qa.eval_chain.QAEvalChain

LLM Chain for evaluating question answering.

evaluation.qa.generate_chain.QAGenerateChain

LLM Chain for generating examples for question answering.

evaluation.regex_match.base.RegexMatchStringEvaluator(*)

Compute a regex match between the prediction and the reference.

evaluation.schema.AgentTrajectoryEvaluator()

Interface for evaluating agent trajectories.

evaluation.schema.EvaluatorType(value[, ...])

The types of the evaluators.

evaluation.schema.LLMEvalChain

A base class for evaluators that use an LLM.

evaluation.schema.PairwiseStringEvaluator()

Compare the output of two models (or two outputs of the same model).

evaluation.schema.StringEvaluator()

Grade, tag, or otherwise evaluate predictions relative to their inputs and/or reference labels.

evaluation.scoring.eval_chain.LabeledScoreStringEvalChain

A chain for scoring the output of a model on a scale of 1-10.

evaluation.scoring.eval_chain.ScoreStringEvalChain

A chain for scoring on a scale of 1-10 the output of a model.

evaluation.scoring.eval_chain.ScoreStringResultOutputParser

A parser for the output of the ScoreStringEvalChain.

evaluation.string_distance.base.PairwiseStringDistanceEvalChain

Compute string edit distances between two predictions.

evaluation.string_distance.base.StringDistance(value)

Distance metric to use.

evaluation.string_distance.base.StringDistanceEvalChain

Compute string distances between the prediction and the reference.

Functions

evaluation.comparison.eval_chain.resolve_pairwise_criteria(...)

Resolve the criteria for the pairwise evaluator.

evaluation.criteria.eval_chain.resolve_criteria(...)

Resolve the criteria to evaluate.

evaluation.loading.load_dataset(uri)

Load a dataset from the LangChainDatasets on HuggingFace.

evaluation.loading.load_evaluator(evaluator, *)

Load the requested evaluation chain specified by a string.

evaluation.loading.load_evaluators(evaluators, *)

Load evaluators specified by a list of evaluator types.

evaluation.scoring.eval_chain.resolve_criteria(...)

Resolve the criteria for the pairwise evaluator.

langchain.graphs

Graphs provide a natural language interface to graph databases.

Classes

graphs.arangodb_graph.ArangoGraph(db)

ArangoDB wrapper for graph operations.

graphs.falkordb_graph.FalkorDBGraph(database)

FalkorDB wrapper for graph operations.

graphs.graph_document.GraphDocument

Represents a graph document consisting of nodes and relationships.

graphs.graph_document.Node

Represents a node in a graph with associated properties.

graphs.graph_document.Relationship

Represents a directed relationship between two nodes in a graph.

graphs.graph_store.GraphStore()

An abstract class wrapper for graph operations.

graphs.hugegraph.HugeGraph([username, ...])

HugeGraph wrapper for graph operations.

graphs.kuzu_graph.KuzuGraph(db[, database])

Kùzu wrapper for graph operations.

graphs.memgraph_graph.MemgraphGraph(url, ...)

Memgraph wrapper for graph operations.

graphs.nebula_graph.NebulaGraph(space[, ...])

NebulaGraph wrapper for graph operations.

graphs.neo4j_graph.Neo4jGraph([url, ...])

Neo4j wrapper for graph operations.

graphs.neptune_graph.NeptuneGraph(host[, ...])

Neptune wrapper for graph operations.

graphs.neptune_graph.NeptuneQueryException(...)

A class to handle queries that fail to execute

graphs.networkx_graph.KnowledgeTriple(...)

A triple in the graph.

graphs.networkx_graph.NetworkxEntityGraph([graph])

Networkx wrapper for entity graph operations.

graphs.rdf_graph.RdfGraph([source_file, ...])

RDFlib wrapper for graph operations.

Functions

graphs.arangodb_graph.get_arangodb_client([...])

Get the Arango DB client from credentials.

graphs.networkx_graph.get_entities(entity_str)

Extract entities from entity string.

graphs.networkx_graph.parse_triples(...)

Parse knowledge triples from the knowledge string.

langchain.hub

Interface with the LangChain Hub.

Functions

hub.pull(owner_repo_commit, *[, api_url, ...])

Pulls an object from the hub and returns it as a LangChain object.

hub.push(repo_full_name, object, *[, ...])

Pushes an object to the hub and returns the URL it can be viewed at in a browser.

langchain.indexes

Code to support various indexing workflows.

Provides code to:

  • Create knowledge graphs from data.

  • Support indexing workflows from LangChain data loaders to vectorstores.

For indexing workflows, this code is used to avoid writing duplicated content into the vectostore and to avoid over-writing content if it’s unchanged.

Importantly, this keeps on working even if the content being written is derived via a set of transformations from some source content (e.g., indexing children documents that were derived from parent documents by chunking.)

Classes

indexes.base.RecordManager(namespace)

An abstract base class representing the interface for a record manager.

indexes.graph.GraphIndexCreator

Functionality to create graph index.

indexes.vectorstore.VectorStoreIndexWrapper

Wrapper around a vectorstore for easy access.

indexes.vectorstore.VectorstoreIndexCreator

Logic for creating indexes.

Functions

langchain.llms

LLM classes provide access to the large language model (LLM) APIs and services.

Class hierarchy:

BaseLanguageModel --> BaseLLM --> LLM --> <name>  # Examples: AI21, HuggingFaceHub, OpenAI

Main helpers:

LLMResult, PromptValue,
CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun,
CallbackManager, AsyncCallbackManager,
AIMessage, BaseMessage

Classes

llms.ai21.AI21

AI21 large language models.

llms.ai21.AI21PenaltyData

Parameters for AI21 penalty data.

llms.aleph_alpha.AlephAlpha

Aleph Alpha large language models.

llms.amazon_api_gateway.AmazonAPIGateway

Amazon API Gateway to access LLM models hosted on AWS.

llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway()

Adapter to prepare the inputs from Langchain to a format that LLM model expects.

llms.anthropic.Anthropic

Anthropic large language models.

llms.anyscale.Anyscale

Anyscale large language models.

llms.arcee.Arcee

Arcee's Domain Adapted Language Models (DALMs).

llms.aviary.Aviary

Aviary hosted models.

llms.aviary.AviaryBackend(backend_url, bearer)

Aviary backend.

llms.azureml_endpoint.AzureMLEndpointClient(...)

AzureML Managed Endpoint client.

llms.azureml_endpoint.AzureMLOnlineEndpoint

Azure ML Online Endpoint models.

llms.azureml_endpoint.ContentFormatterBase()

Transform request and response of AzureML endpoint to match with required schema.

llms.azureml_endpoint.DollyContentFormatter()

Content handler for the Dolly-v2-12b model

llms.azureml_endpoint.GPT2ContentFormatter()

Content handler for GPT2

llms.azureml_endpoint.HFContentFormatter()

Content handler for LLMs from the HuggingFace catalog.

llms.azureml_endpoint.LlamaContentFormatter()

Content formatter for LLaMa

llms.azureml_endpoint.OSSContentFormatter()

Deprecated: Kept for backwards compatibility

llms.baidu_qianfan_endpoint.QianfanLLMEndpoint

Baidu Qianfan hosted open source or customized models.

llms.bananadev.Banana

Banana large language models.

llms.baseten.Baseten

Baseten models.

llms.beam.Beam

Beam API for gpt2 large language model.

llms.bedrock.Bedrock

Bedrock models.

llms.bedrock.BedrockBase

Base class for Bedrock models.

llms.bedrock.LLMInputOutputAdapter()

Adapter class to prepare the inputs from Langchain to a format that LLM model expects.

llms.bittensor.NIBittensorLLM

NIBittensor LLMs

llms.cerebriumai.CerebriumAI

CerebriumAI large language models.

llms.chatglm.ChatGLM

ChatGLM LLM service.

llms.clarifai.Clarifai

Clarifai large language models.

llms.cohere.BaseCohere

Base class for Cohere models.

llms.cohere.Cohere

Cohere large language models.

llms.ctransformers.CTransformers

C Transformers LLM models.

llms.ctranslate2.CTranslate2

CTranslate2 language model.

llms.databricks.Databricks

Databricks serving endpoint or a cluster driver proxy app for LLM.

llms.deepinfra.DeepInfra

DeepInfra models.

llms.deepsparse.DeepSparse

Neural Magic DeepSparse LLM interface.

llms.edenai.EdenAI

Wrapper around edenai models.

llms.fake.FakeListLLM

Fake LLM for testing purposes.

llms.fake.FakeStreamingListLLM

Fake streaming list LLM for testing purposes.

llms.fireworks.Fireworks

Fireworks models.

llms.forefrontai.ForefrontAI

ForefrontAI large language models.

llms.gigachat.GigaChat

GigaChat large language models API.

llms.google_palm.GooglePalm

Google PaLM models.

llms.gooseai.GooseAI

GooseAI large language models.

llms.gpt4all.GPT4All

GPT4All language models.

llms.gradient_ai.GradientLLM

Gradient.ai LLM Endpoints.

llms.gradient_ai.TrainResult

Train result.

llms.huggingface_endpoint.HuggingFaceEndpoint

HuggingFace Endpoint models.

llms.huggingface_hub.HuggingFaceHub

HuggingFaceHub models.

llms.huggingface_pipeline.HuggingFacePipeline

HuggingFace Pipeline API.

llms.huggingface_text_gen_inference.HuggingFaceTextGenInference

HuggingFace text generation API.

llms.human.HumanInputLLM

It returns user input as the response.

llms.javelin_ai_gateway.JavelinAIGateway

Javelin AI Gateway LLMs.

llms.javelin_ai_gateway.Params

Parameters for the Javelin AI Gateway LLM.

llms.koboldai.KoboldApiLLM

Kobold API language model.

llms.llamacpp.LlamaCpp

llama.cpp model.

llms.manifest.ManifestWrapper

HazyResearch's Manifest library.

llms.minimax.Minimax

Wrapper around Minimax large language models.

llms.minimax.MinimaxCommon

Common parameters for Minimax large language models.

llms.mlflow_ai_gateway.MlflowAIGateway

Wrapper around completions LLMs in the MLflow AI Gateway.

llms.mlflow_ai_gateway.Params

Parameters for the MLflow AI Gateway LLM.

llms.modal.Modal

Modal large language models.

llms.mosaicml.MosaicML

MosaicML LLM service.

llms.nlpcloud.NLPCloud

NLPCloud large language models.

llms.octoai_endpoint.OctoAIEndpoint

OctoAI LLM Endpoints.

llms.ollama.Ollama

Ollama locally runs large language models.

llms.opaqueprompts.OpaquePrompts

An LLM wrapper that uses OpaquePrompts to sanitize prompts.

llms.openai.AzureOpenAI

Azure-specific OpenAI large language models.

llms.openai.BaseOpenAI

Base OpenAI large language model class.

llms.openai.OpenAI

OpenAI large language models.

llms.openai.OpenAIChat

OpenAI Chat large language models.

llms.openllm.IdentifyingParams

Parameters for identifying a model as a typed dict.

llms.openllm.OpenLLM

OpenLLM, supporting both in-process model instance and remote OpenLLM servers.

llms.openlm.OpenLM

OpenLM models.

llms.pai_eas_endpoint.PaiEasEndpoint

Langchain LLM class to help to access eass llm service.

llms.petals.Petals

Petals Bloom models.

llms.pipelineai.PipelineAI

PipelineAI large language models.

llms.predibase.Predibase

Use your Predibase models with Langchain.

llms.predictionguard.PredictionGuard

Prediction Guard large language models.

llms.promptlayer_openai.PromptLayerOpenAI

PromptLayer OpenAI large language models.

llms.promptlayer_openai.PromptLayerOpenAIChat

Wrapper around OpenAI large language models.

llms.replicate.Replicate

Replicate models.

llms.rwkv.RWKV

RWKV language models.

llms.sagemaker_endpoint.ContentHandlerBase()

A handler class to transform input from LLM to a format that SageMaker endpoint expects.

llms.sagemaker_endpoint.LLMContentHandler()

Content handler for LLM class.

llms.sagemaker_endpoint.LineIterator(stream)

A helper class for parsing the byte stream input.

llms.sagemaker_endpoint.SagemakerEndpoint

Sagemaker Inference Endpoint models.

llms.self_hosted.SelfHostedPipeline

Model inference on self-hosted remote hardware.

llms.self_hosted_hugging_face.SelfHostedHuggingFaceLLM

HuggingFace Pipeline API to run on self-hosted remote hardware.

llms.stochasticai.StochasticAI

StochasticAI large language models.

llms.symblai_nebula.Nebula

Nebula Service models.

llms.textgen.TextGen

text-generation-webui models.

llms.titan_takeoff.TitanTakeoff

Wrapper around Titan Takeoff APIs.

llms.titan_takeoff_pro.TitanTakeoffPro

Create a new model by parsing and validating input data from keyword arguments.

llms.together.Together

Wrapper around Together AI models.

llms.tongyi.Tongyi

Tongyi Qwen large language models.

llms.vertexai.VertexAI

Google Vertex AI large language models.

llms.vertexai.VertexAIModelGarden

Large language models served from Vertex AI Model Garden.

llms.vllm.VLLM

VLLM language model.

llms.vllm.VLLMOpenAI

vLLM OpenAI-compatible API client

llms.writer.Writer

Writer large language models.

llms.xinference.Xinference

Wrapper for accessing Xinference's large-scale model inference service.

llms.yandex.YandexGPT

Yandex large language models.

Functions

llms.anyscale.create_llm_result(choices, ...)

Create the LLMResult from the choices and prompts.

llms.anyscale.update_token_usage(keys, ...)

Update token usage.

llms.aviary.get_completions(model, prompt[, ...])

Get completions from Aviary models.

llms.aviary.get_models()

List available models

llms.cohere.acompletion_with_retry(llm, **kwargs)

Use tenacity to retry the completion call.

llms.cohere.completion_with_retry(llm, **kwargs)

Use tenacity to retry the completion call.

llms.databricks.get_default_api_token()

Gets the default Databricks personal access token.

llms.databricks.get_default_host()

Gets the default Databricks workspace hostname.

llms.databricks.get_repl_context()

Gets the notebook REPL context if running inside a Databricks notebook.

llms.fireworks.acompletion_with_retry(llm, ...)

Use tenacity to retry the completion call.

llms.fireworks.acompletion_with_retry_batching(...)

Use tenacity to retry the completion call.

llms.fireworks.acompletion_with_retry_streaming(...)

Use tenacity to retry the completion call for streaming.

llms.fireworks.completion_with_retry(llm, ...)

Use tenacity to retry the completion call.

llms.fireworks.completion_with_retry_batching(...)

Use tenacity to retry the completion call.

llms.fireworks.conditional_decorator(...)

llms.google_palm.generate_with_retry(llm, ...)

Use tenacity to retry the completion call.

llms.koboldai.clean_url(url)

Remove trailing slash and /api from url if present.

llms.loading.load_llm(file)

Load LLM from file.

llms.loading.load_llm_from_config(config)

Load LLM from Config Dict.

llms.openai.acompletion_with_retry(llm[, ...])

Use tenacity to retry the async completion call.

llms.openai.completion_with_retry(llm[, ...])

Use tenacity to retry the completion call.

llms.openai.update_token_usage(keys, ...)

Update token usage.

llms.symblai_nebula.completion_with_retry(...)

Use tenacity to retry the completion call.

llms.symblai_nebula.make_request(self, ...)

Generate text from the model.

llms.tongyi.generate_with_retry(llm, **kwargs)

Use tenacity to retry the completion call.

llms.tongyi.stream_generate_with_retry(llm, ...)

Use tenacity to retry the completion call.

llms.utils.enforce_stop_tokens(text, stop)

Cut off the text as soon as any stop words occur.

llms.vertexai.acompletion_with_retry(llm, *args)

Use tenacity to retry the completion call.

llms.vertexai.completion_with_retry(llm, *args)

Use tenacity to retry the completion call.

llms.vertexai.is_codey_model(model_name)

Returns True if the model name is a Codey model.

llms.vertexai.stream_completion_with_retry(...)

Use tenacity to retry the completion call.

langchain.memory

Memory maintains Chain state, incorporating context from past runs.

Class hierarchy for Memory:

BaseMemory --> BaseChatMemory --> <name>Memory  # Examples: ZepMemory, MotorheadMemory

Main helpers:

BaseChatMessageHistory

Chat Message History stores the chat message history in different stores.

Class hierarchy for ChatMessageHistory:

BaseChatMessageHistory --> <name>ChatMessageHistory  # Example: ZepChatMessageHistory

Main helpers:

AIMessage, BaseMessage, HumanMessage

Classes

memory.buffer.ConversationBufferMemory

Buffer for storing conversation memory.

memory.buffer.ConversationStringBufferMemory

Buffer for storing conversation memory.

memory.buffer_window.ConversationBufferWindowMemory

Buffer for storing conversation memory inside a limited size window.

memory.chat_memory.BaseChatMemory

Abstract base class for chat memory.

memory.chat_message_histories.cassandra.CassandraChatMessageHistory(...)

Chat message history that stores history in Cassandra.

memory.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory(...)

Chat message history backed by Azure CosmosDB.

memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory(...)

Chat message history that stores history in AWS DynamoDB.

memory.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory(...)

Chat message history that stores history in Elasticsearch.

memory.chat_message_histories.file.FileChatMessageHistory(...)

Chat message history that stores history in a local file.

memory.chat_message_histories.firestore.FirestoreChatMessageHistory(...)

Chat message history backed by Google Firestore.

memory.chat_message_histories.in_memory.ChatMessageHistory

In memory implementation of chat message history.

memory.chat_message_histories.momento.MomentoChatMessageHistory(...)

Chat message history cache that uses Momento as a backend.

memory.chat_message_histories.mongodb.MongoDBChatMessageHistory(...)

Chat message history that stores history in MongoDB.

memory.chat_message_histories.neo4j.Neo4jChatMessageHistory(...)

Chat message history stored in a Neo4j database.

memory.chat_message_histories.postgres.PostgresChatMessageHistory(...)

Chat message history stored in a Postgres database.

memory.chat_message_histories.redis.RedisChatMessageHistory(...)

Chat message history stored in a Redis database.

memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory(...)

Uses Rockset to store chat messages.

memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory(...)

Chat message history stored in a SingleStoreDB database.

memory.chat_message_histories.sql.BaseMessageConverter()

The class responsible for converting BaseMessage to your SQLAlchemy model.

memory.chat_message_histories.sql.DefaultMessageConverter(...)

The default message converter for SQLChatMessageHistory.

memory.chat_message_histories.sql.SQLChatMessageHistory(...)

Chat message history stored in an SQL database.

memory.chat_message_histories.streamlit.StreamlitChatMessageHistory([key])

Chat message history that stores messages in Streamlit session state.

memory.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory(...)

Chat message history stored in an Upstash Redis database.

memory.chat_message_histories.xata.XataChatMessageHistory(...)

Chat message history stored in a Xata database.

memory.chat_message_histories.zep.ZepChatMessageHistory(...)

Chat message history that uses Zep as a backend.

memory.combined.CombinedMemory

Combining multiple memories' data together.

memory.entity.BaseEntityStore

Abstract base class for Entity store.

memory.entity.ConversationEntityMemory

Entity extractor & summarizer memory.

memory.entity.InMemoryEntityStore

In-memory Entity store.

memory.entity.RedisEntityStore

Redis-backed Entity store.

memory.entity.SQLiteEntityStore

SQLite-backed Entity store

memory.entity.UpstashRedisEntityStore

Upstash Redis backed Entity store.

memory.kg.ConversationKGMemory

Knowledge graph conversation memory.

memory.motorhead_memory.MotorheadMemory

Chat message memory backed by Motorhead service.

memory.readonly.ReadOnlySharedMemory

A memory wrapper that is read-only and cannot be changed.

memory.simple.SimpleMemory

Simple memory for storing context or other information that shouldn't ever change between prompts.

memory.summary.ConversationSummaryMemory

Conversation summarizer to chat memory.

memory.summary.SummarizerMixin

Mixin for summarizer.

memory.summary_buffer.ConversationSummaryBufferMemory

Buffer with summarizer for storing conversation memory.

memory.token_buffer.ConversationTokenBufferMemory

Conversation chat memory with token limit.

memory.vectorstore.VectorStoreRetrieverMemory

VectorStoreRetriever-backed memory.

memory.zep_memory.ZepMemory

Persist your chain history to the Zep MemoryStore.

Functions

memory.chat_message_histories.sql.create_message_model(...)

Create a message model for a given table name.

memory.utils.get_prompt_input_key(inputs, ...)

Get the prompt input key.

langchain.model_laboratory

Experiment with different models.

Classes

model_laboratory.ModelLaboratory(chains[, names])

Experiment with different models.

langchain.output_parsers

OutputParser classes parse the output of an LLM call.

Class hierarchy:

BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser  # ListOutputParser, PydanticOutputParser

Main helpers:

Serializable, Generation, PromptValue

Classes

output_parsers.boolean.BooleanOutputParser

Parse the output of an LLM call to a boolean.

output_parsers.combining.CombiningOutputParser

Combine multiple output parsers into one.

output_parsers.datetime.DatetimeOutputParser

Parse the output of an LLM call to a datetime.

output_parsers.enum.EnumOutputParser

Parse an output that is one of a set of values.

output_parsers.ernie_functions.JsonKeyOutputFunctionsParser

Parse an output as the element of the Json object.

output_parsers.ernie_functions.JsonOutputFunctionsParser

Parse an output as the Json object.

output_parsers.ernie_functions.OutputFunctionsParser

Parse an output that is one of sets of values.

output_parsers.ernie_functions.PydanticAttrOutputFunctionsParser

Parse an output as an attribute of a pydantic object.

output_parsers.ernie_functions.PydanticOutputFunctionsParser

Parse an output as a pydantic object.

output_parsers.fix.OutputFixingParser

Wraps a parser and tries to fix parsing errors.

output_parsers.json.SimpleJsonOutputParser

Parse the output of an LLM call to a JSON object.

output_parsers.openai_functions.JsonKeyOutputFunctionsParser

Parse an output as the element of the Json object.

output_parsers.openai_functions.JsonOutputFunctionsParser

Parse an output as the Json object.

output_parsers.openai_functions.OutputFunctionsParser

Parse an output that is one of sets of values.

output_parsers.openai_functions.PydanticAttrOutputFunctionsParser

Parse an output as an attribute of a pydantic object.

output_parsers.openai_functions.PydanticOutputFunctionsParser

Parse an output as a pydantic object.

output_parsers.openai_tools.JsonOutputKeyToolsParser

Parse tools from OpenAI response.

output_parsers.openai_tools.JsonOutputToolsParser

Parse tools from OpenAI response.

output_parsers.openai_tools.PydanticToolsParser

Parse tools from OpenAI response.

output_parsers.pydantic.PydanticOutputParser

Parse an output using a pydantic model.

output_parsers.rail_parser.GuardrailsOutputParser

Parse the output of an LLM call using Guardrails.

output_parsers.regex.RegexParser

Parse the output of an LLM call using a regex.

output_parsers.regex_dict.RegexDictParser

Parse the output of an LLM call into a Dictionary using a regex.

output_parsers.retry.RetryOutputParser

Wraps a parser and tries to fix parsing errors.

output_parsers.retry.RetryWithErrorOutputParser

Wraps a parser and tries to fix parsing errors.

output_parsers.structured.ResponseSchema

A schema for a response from a structured output parser.

output_parsers.structured.StructuredOutputParser

Parse the output of an LLM call to a structured output.

output_parsers.xml.XMLOutputParser

Parse an output using xml format.

Functions

output_parsers.json.parse_and_check_json_markdown(...)

Parse a JSON string from a Markdown string and check that it contains the expected keys.

output_parsers.json.parse_json_markdown(...)

Parse a JSON string from a Markdown string.

output_parsers.json.parse_partial_json(s, *)

Parse a JSON string that may be missing closing braces.

output_parsers.loading.load_output_parser(config)

Load an output parser.

langchain.prompts

Prompt is the input to the model.

Prompt is often constructed from multiple components. Prompt classes and functions make constructing

and working with prompts easy.

Class hierarchy:

BasePromptTemplate --> PipelinePromptTemplate
                       StringPromptTemplate --> PromptTemplate
                                                FewShotPromptTemplate
                                                FewShotPromptWithTemplates
                       BaseChatPromptTemplate --> AutoGPTPrompt
                                                  ChatPromptTemplate --> AgentScratchPadChatPromptTemplate



BaseMessagePromptTemplate --> MessagesPlaceholder
                              BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate
                                                                  HumanMessagePromptTemplate
                                                                  AIMessagePromptTemplate
                                                                  SystemMessagePromptTemplate

PromptValue --> StringPromptValue
                ChatPromptValue

Classes

prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector

Select and order examples based on ngram overlap score (sentence_bleu score).

Functions

prompts.example_selector.ngram_overlap.ngram_overlap_score(...)

Compute ngram overlap score of source and example as sentence_bleu score.

langchain.retrievers

Retriever class returns Documents given a text query.

It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used as the backbone of a retriever, but there are other types of retrievers as well.

Class hierarchy:

BaseRetriever --> <name>Retriever  # Examples: ArxivRetriever, MergerRetriever

Main helpers:

Document, Serializable, Callbacks,
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun

Classes

retrievers.arcee.ArceeRetriever

Document retriever for Arcee's Domain Adapted Language Models (DALMs).

retrievers.arxiv.ArxivRetriever

Arxiv retriever.

retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever

Azure Cognitive Search service retriever.

retrievers.bm25.BM25Retriever

BM25 retriever without Elasticsearch.

retrievers.chaindesk.ChaindeskRetriever

Chaindesk API retriever.

retrievers.chatgpt_plugin_retriever.ChatGPTPluginRetriever

ChatGPT plugin retriever.

retrievers.cohere_rag_retriever.CohereRagRetriever

Cohere Chat API with RAG.

retrievers.contextual_compression.ContextualCompressionRetriever

Retriever that wraps a base retriever and compresses the results.

retrievers.databerry.DataberryRetriever

Databerry API retriever.

retrievers.docarray.DocArrayRetriever

DocArray Document Indices retriever.

retrievers.docarray.SearchType(value[, ...])

Enumerator of the types of search to perform.

retrievers.document_compressors.base.BaseDocumentCompressor

Base class for document compressors.

retrievers.document_compressors.base.DocumentCompressorPipeline

Document compressor that uses a pipeline of Transformers.

retrievers.document_compressors.chain_extract.LLMChainExtractor

Document compressor that uses an LLM chain to extract the relevant parts of documents.

retrievers.document_compressors.chain_extract.NoOutputParser

Parse outputs that could return a null string of some sort.

retrievers.document_compressors.chain_filter.LLMChainFilter

Filter that drops documents that aren't relevant to the query.

retrievers.document_compressors.cohere_rerank.CohereRerank

Document compressor that uses Cohere Rerank API.

retrievers.document_compressors.embeddings_filter.EmbeddingsFilter

Document compressor that uses embeddings to drop documents unrelated to the query.

retrievers.elastic_search_bm25.ElasticSearchBM25Retriever

Elasticsearch retriever that uses BM25.

retrievers.embedchain.EmbedchainRetriever

Embedchain retriever.

retrievers.ensemble.EnsembleRetriever

Retriever that ensembles the multiple retrievers.

retrievers.google_cloud_documentai_warehouse.GoogleDocumentAIWarehouseRetriever

A retriever based on Document AI Warehouse.

retrievers.google_vertex_ai_search.GoogleCloudEnterpriseSearchRetriever

Google Vertex Search API retriever alias for backwards compatibility.

retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever

Google Vertex AI Search retriever for multi-turn conversations.

retrievers.google_vertex_ai_search.GoogleVertexAISearchRetriever

Google Vertex AI Search retriever.

retrievers.kay.KayAiRetriever

Retriever for Kay.ai datasets.

retrievers.kendra.AdditionalResultAttribute

Additional result attribute.

retrievers.kendra.AdditionalResultAttributeValue

Value of an additional result attribute.

retrievers.kendra.AmazonKendraRetriever

Amazon Kendra Index retriever.

retrievers.kendra.DocumentAttribute

Document attribute.

retrievers.kendra.DocumentAttributeValue

Value of a document attribute.

retrievers.kendra.Highlight

Information that highlights the keywords in the excerpt.

retrievers.kendra.QueryResult

Amazon Kendra Query API search result.

retrievers.kendra.QueryResultItem

Query API result item.

retrievers.kendra.ResultItem

Base class of a result item.

retrievers.kendra.RetrieveResult

Amazon Kendra Retrieve API search result.

retrievers.kendra.RetrieveResultItem

Retrieve API result item.

retrievers.kendra.TextWithHighLights

Text with highlights.

retrievers.knn.KNNRetriever

KNN retriever.

retrievers.llama_index.LlamaIndexGraphRetriever

LlamaIndex graph data structure retriever.

retrievers.llama_index.LlamaIndexRetriever

LlamaIndex retriever.

retrievers.merger_retriever.MergerRetriever

Retriever that merges the results of multiple retrievers.

retrievers.metal.MetalRetriever

Metal API retriever.

retrievers.milvus.MilvusRetriever

Milvus API retriever.

retrievers.multi_query.LineList

List of lines.

retrievers.multi_query.LineListOutputParser

Output parser for a list of lines.

retrievers.multi_query.MultiQueryRetriever

Given a query, use an LLM to write a set of queries.

retrievers.multi_vector.MultiVectorRetriever

Retrieve from a set of multiple embeddings for the same document.

retrievers.parent_document_retriever.ParentDocumentRetriever

Retrieve small chunks then retrieve their parent documents.

retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever

Pinecone Hybrid Search retriever.

retrievers.pubmed.PubMedRetriever

PubMed API retriever.

retrievers.re_phraser.RePhraseQueryRetriever

Given a query, use an LLM to re-phrase it.

retrievers.remote_retriever.RemoteLangChainRetriever

LangChain API retriever.

retrievers.self_query.base.SelfQueryRetriever

Retriever that uses a vector store and an LLM to generate the vector store queries.

retrievers.self_query.chroma.ChromaTranslator()

Translate Chroma internal query language elements to valid filters.

retrievers.self_query.dashvector.DashvectorTranslator()

Logic for converting internal query language elements to valid filters.

retrievers.self_query.deeplake.DeepLakeTranslator()

Translate DeepLake internal query language elements to valid filters.

retrievers.self_query.elasticsearch.ElasticsearchTranslator()

Translate Elasticsearch internal query language elements to valid filters.

retrievers.self_query.milvus.MilvusTranslator()

Translate Milvus internal query language elements to valid filters.

retrievers.self_query.myscale.MyScaleTranslator([...])

Translate MyScale internal query language elements to valid filters.

retrievers.self_query.opensearch.OpenSearchTranslator()

Translate OpenSearch internal query domain-specific language elements to valid filters.

retrievers.self_query.pinecone.PineconeTranslator()

Translate Pinecone internal query language elements to valid filters.

retrievers.self_query.qdrant.QdrantTranslator(...)

Translate Qdrant internal query language elements to valid filters.

retrievers.self_query.redis.RedisTranslator(schema)

Translate

retrievers.self_query.supabase.SupabaseVectorTranslator()

Translate Langchain filters to Supabase PostgREST filters.

retrievers.self_query.timescalevector.TimescaleVectorTranslator()

Translate the internal query language elements to valid filters.

retrievers.self_query.vectara.VectaraTranslator()

Translate Vectara internal query language elements to valid filters.

retrievers.self_query.weaviate.WeaviateTranslator()

Translate Weaviate internal query language elements to valid filters.

retrievers.svm.SVMRetriever

SVM retriever.

retrievers.tavily_search_api.SearchDepth(value)

Search depth as enumerator.

retrievers.tavily_search_api.TavilySearchAPIRetriever

Tavily Search API retriever.

retrievers.tfidf.TFIDFRetriever

TF-IDF retriever.

retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever

Retriever that combines embedding similarity with recency in retrieving values.

retrievers.vespa_retriever.VespaRetriever

Vespa retriever.

retrievers.weaviate_hybrid_search.WeaviateHybridSearchRetriever

Weaviate hybrid search retriever.

retrievers.web_research.LineList

List of questions.

retrievers.web_research.QuestionListOutputParser

Output parser for a list of numbered questions.

retrievers.web_research.SearchQueries

Search queries to research for the user's goal.

retrievers.web_research.WebResearchRetriever

Google Search API retriever.

retrievers.wikipedia.WikipediaRetriever

Wikipedia API retriever.

retrievers.you.YouRetriever

You retriever that uses You.com's search API.

retrievers.zep.SearchScope(value[, names, ...])

Which documents to search.

retrievers.zep.SearchType(value[, names, ...])

Enumerator of the types of search to perform.

retrievers.zep.ZepRetriever

Zep MemoryStore Retriever.

retrievers.zilliz.ZillizRetriever

Zilliz API retriever.

Functions

retrievers.bm25.default_preprocessing_func(text)

retrievers.document_compressors.chain_extract.default_get_input(...)

Return the compression chain input.

retrievers.document_compressors.chain_filter.default_get_input(...)

Return the compression chain input.

retrievers.kendra.clean_excerpt(excerpt)

Clean an excerpt from Kendra.

retrievers.kendra.combined_text(item)

Combine a ResultItem title and excerpt into a single string.

retrievers.knn.create_index(contexts, embeddings)

Create an index of embeddings for a list of contexts.

retrievers.milvus.MilvusRetreiver(*args, ...)

Deprecated MilvusRetreiver.

retrievers.pinecone_hybrid_search.create_index(...)

Create an index from a list of contexts.

retrievers.pinecone_hybrid_search.hash_text(text)

Hash a text using SHA256.

retrievers.self_query.deeplake.can_cast_to_float(string)

Check if a string can be cast to a float.

retrievers.self_query.milvus.process_value(value)

Convert a value to a string and add double quotes if it is a string.

retrievers.self_query.vectara.process_value(value)

Convert a value to a string and add single quotes if it is a string.

retrievers.svm.create_index(contexts, embeddings)

Create an index of embeddings for a list of contexts.

retrievers.zilliz.ZillizRetreiver(*args, ...)

Deprecated ZillizRetreiver.

langchain.runnables

Classes

runnables.hub.HubRunnable

An instance of a runnable stored in the LangChain Hub.

runnables.openai_functions.OpenAIFunction

A function description for ChatOpenAI

runnables.openai_functions.OpenAIFunctionsRouter

A runnable that routes to the selected function.

langchain.smith

LangSmith utilities.

This module provides utilities for connecting to LangSmith. For more information on LangSmith, see the LangSmith documentation.

Evaluation

LangSmith helps you evaluate Chains and other language model application components using a number of LangChain evaluators. An example of this is shown below, assuming you’ve created a LangSmith dataset called <my_dataset_name>:

from langsmith import Client
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.smith import RunEvalConfig, run_on_dataset

# Chains may have memory. Passing in a constructor function lets the
# evaluation framework avoid cross-contamination between runs.
def construct_chain():
    llm = ChatOpenAI(temperature=0)
    chain = LLMChain.from_string(
        llm,
        "What's the answer to {your_input_key}"
    )
    return chain

# Load off-the-shelf evaluators via config or the EvaluatorType (string or enum)
evaluation_config = RunEvalConfig(
    evaluators=[
        "qa",  # "Correctness" against a reference answer
        "embedding_distance",
        RunEvalConfig.Criteria("helpfulness"),
        RunEvalConfig.Criteria({
            "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?"
        }),
    ]
)

client = Client()
run_on_dataset(
    client,
    "<my_dataset_name>",
    construct_chain,
    evaluation=evaluation_config,
)

You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes.

from typing import Optional
from langchain.evaluation import StringEvaluator

class MyStringEvaluator(StringEvaluator):

    @property
    def requires_input(self) -> bool:
        return False

    @property
    def requires_reference(self) -> bool:
        return True

    @property
    def evaluation_name(self) -> str:
        return "exact_match"

    def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict:
        return {"score": prediction == reference}


evaluation_config = RunEvalConfig(
    custom_evaluators = [MyStringEvaluator()],
)

run_on_dataset(
    client,
    "<my_dataset_name>",
    construct_chain,
    evaluation=evaluation_config,
)

Primary Functions

  • arun_on_dataset: Asynchronous function to evaluate a chain, agent, or other LangChain component over a dataset.

  • run_on_dataset: Function to evaluate a chain, agent, or other LangChain component over a dataset.

  • RunEvalConfig: Class representing the configuration for running evaluation. You can select evaluators by EvaluatorType or config, or you can pass in custom_evaluators

Classes

smith.evaluation.config.EvalConfig

Configuration for a given run evaluator.

smith.evaluation.config.RunEvalConfig

Configuration for a run evaluation.

smith.evaluation.config.SingleKeyEvalConfig

Create a new model by parsing and validating input data from keyword arguments.

smith.evaluation.progress.ProgressBarCallback(total)

A simple progress bar for the console.

smith.evaluation.runner_utils.EvalError(...)

Your architecture raised an error.

smith.evaluation.runner_utils.InputFormatError

Raised when the input format is invalid.

smith.evaluation.runner_utils.TestResult

A dictionary of the results of a single test run.

smith.evaluation.string_run_evaluator.ChainStringRunMapper

Extract items to evaluate from the run object from a chain.

smith.evaluation.string_run_evaluator.LLMStringRunMapper

Extract items to evaluate from the run object.

smith.evaluation.string_run_evaluator.StringExampleMapper

Map an example, or row in the dataset, to the inputs of an evaluation.

smith.evaluation.string_run_evaluator.StringRunEvaluatorChain

Evaluate Run and optional examples.

smith.evaluation.string_run_evaluator.StringRunMapper

Extract items to evaluate from the run object.

smith.evaluation.string_run_evaluator.ToolStringRunMapper

Map an input to the tool.

Functions

smith.evaluation.name_generation.random_name()

Generate a random name.

smith.evaluation.runner_utils.arun_on_dataset(...)

Run the Chain or language model on a dataset and store traces to the specified project name.

smith.evaluation.runner_utils.run_on_dataset(...)

Run the Chain or language model on a dataset and store traces to the specified project name.

langchain.storage

Implementations of key-value stores and storage helpers.

Module provides implementations of various key-value stores that conform to a simple key-value interface.

The primary goal of these storages is to support implementation of caching.

Classes

storage.encoder_backed.EncoderBackedStore(...)

Wraps a store with key and value encoders/decoders.

storage.exceptions.InvalidKeyException

Raised when a key is invalid; e.g., uses incorrect characters.

storage.file_system.LocalFileStore(root_path)

BaseStore interface that works on the local file system.

storage.in_memory.InMemoryStore()

In-memory implementation of the BaseStore using a dictionary.

storage.redis.RedisStore(*[, client, ...])

BaseStore implementation using Redis as the underlying store.

storage.upstash_redis.UpstashRedisStore(*[, ...])

BaseStore implementation using Upstash Redis as the underlying store.

langchain.text_splitter

Text Splitters are classes for splitting text.

Class hierarchy:

BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter  # Example: CharacterTextSplitter
                                             RecursiveCharacterTextSplitter -->  <name>TextSplitter

Note: MarkdownHeaderTextSplitter and **HTMLHeaderTextSplitter do not derive from TextSplitter.

Main helpers:

Document, Tokenizer, Language, LineType, HeaderType

Classes

text_splitter.CharacterTextSplitter([...])

Splitting text that looks at characters.

text_splitter.ElementType

Element type as typed dict.

text_splitter.HTMLHeaderTextSplitter(...[, ...])

Splitting HTML files based on specified headers.

text_splitter.HeaderType

Header type as typed dict.

text_splitter.Language(value[, names, ...])

Enum of the programming languages.

text_splitter.LatexTextSplitter(**kwargs)

Attempts to split the text along Latex-formatted layout elements.

text_splitter.LineType

Line type as typed dict.

text_splitter.MarkdownHeaderTextSplitter(...)

Splitting markdown files based on specified headers.

text_splitter.MarkdownTextSplitter(**kwargs)

Attempts to split the text along Markdown-formatted headings.

text_splitter.NLTKTextSplitter([separator, ...])

Splitting text using NLTK package.

text_splitter.PythonCodeTextSplitter(**kwargs)

Attempts to split the text along Python syntax.

text_splitter.RecursiveCharacterTextSplitter([...])

Splitting text by recursively look at characters.

text_splitter.SentenceTransformersTokenTextSplitter([...])

Splitting text to tokens using sentence model tokenizer.

text_splitter.SpacyTextSplitter([separator, ...])

Splitting text using Spacy package.

text_splitter.TextSplitter(chunk_size, ...)

Interface for splitting text into chunks.

text_splitter.TokenTextSplitter([...])

Splitting text to tokens using model tokenizer.

text_splitter.Tokenizer(chunk_overlap, ...)

Tokenizer data class.

Functions

text_splitter.split_text_on_tokens(*, text, ...)

Split incoming text and return chunks using tokenizer.

langchain.tools

Tools are classes that an Agent uses to interact with the world.

Each tool has a description. Agent uses the description to choose the right tool for the job.

Class hierarchy:

ToolMetaclass --> BaseTool --> <name>Tool  # Examples: AIPluginTool, BaseGraphQLTool
                               <name>      # Examples: BraveSearch, HumanInputRun

Main helpers:

CallbackManagerForToolRun, AsyncCallbackManagerForToolRun

Classes

tools.ainetwork.app.AINAppOps

Tool for app operations.

tools.ainetwork.app.AppOperationType(value)

Type of app operation as enumerator.

tools.ainetwork.app.AppSchema

Schema for app operations.

tools.ainetwork.base.AINBaseTool

Base class for the AINetwork tools.

tools.ainetwork.base.OperationType(value[, ...])

Type of operation as enumerator.

tools.ainetwork.owner.AINOwnerOps

Tool for owner operations.

tools.ainetwork.owner.RuleSchema

Schema for owner operations.

tools.ainetwork.rule.AINRuleOps

Tool for owner operations.

tools.ainetwork.rule.RuleSchema

Schema for owner operations.

tools.ainetwork.transfer.AINTransfer

Tool for transfer operations.

tools.ainetwork.transfer.TransferSchema

Schema for transfer operations.

tools.ainetwork.value.AINValueOps

Tool for value operations.

tools.ainetwork.value.ValueSchema

Schema for value operations.

tools.amadeus.base.AmadeusBaseTool

Base Tool for Amadeus.

tools.amadeus.closest_airport.AmadeusClosestAirport

Tool for finding the closest airport to a particular location.

tools.amadeus.closest_airport.ClosestAirportSchema

Schema for the AmadeusClosestAirport tool.

tools.amadeus.flight_search.AmadeusFlightSearch

Tool for searching for a single flight between two airports.

tools.amadeus.flight_search.FlightSearchSchema

Schema for the AmadeusFlightSearch tool.

tools.arxiv.tool.ArxivInput

Create a new model by parsing and validating input data from keyword arguments.

tools.arxiv.tool.ArxivQueryRun

Tool that searches the Arxiv API.

tools.azure_cognitive_services.form_recognizer.AzureCogsFormRecognizerTool

Tool that queries the Azure Cognitive Services Form Recognizer API.

tools.azure_cognitive_services.image_analysis.AzureCogsImageAnalysisTool

Tool that queries the Azure Cognitive Services Image Analysis API.

tools.azure_cognitive_services.speech2text.AzureCogsSpeech2TextTool

Tool that queries the Azure Cognitive Services Speech2Text API.

tools.azure_cognitive_services.text2speech.AzureCogsText2SpeechTool

Tool that queries the Azure Cognitive Services Text2Speech API.

tools.azure_cognitive_services.text_analytics_health.AzureCogsTextAnalyticsHealthTool

Tool that queries the Azure Cognitive Services Text Analytics for Health API.

tools.bearly.tool.BearlyInterpreterTool(api_key)

Tool for evaluating python code in a sandbox environment.

tools.bearly.tool.BearlyInterpreterToolArguments

Arguments for the BearlyInterpreterTool.

tools.bearly.tool.FileInfo

Information about a file to be uploaded.

tools.bing_search.tool.BingSearchResults

Tool that queries the Bing Search API and gets back json.

tools.bing_search.tool.BingSearchRun

Tool that queries the Bing search API.

tools.brave_search.tool.BraveSearch

Tool that queries the BraveSearch.

tools.clickup.tool.ClickupAction

Tool that queries the Clickup API.

tools.dataforseo_api_search.tool.DataForSeoAPISearchResults

Tool that queries the DataForSeo Google Search API and get back json.

tools.dataforseo_api_search.tool.DataForSeoAPISearchRun

Tool that queries the DataForSeo Google search API.

tools.ddg_search.tool.DDGInput

Create a new model by parsing and validating input data from keyword arguments.

tools.ddg_search.tool.DuckDuckGoSearchResults

Tool that queries the DuckDuckGo search API and gets back json.

tools.ddg_search.tool.DuckDuckGoSearchRun

Tool that queries the DuckDuckGo search API.

tools.e2b_data_analysis.tool.E2BDataAnalysisTool

Tool for running python code in a sandboxed environment for data analysis.

tools.e2b_data_analysis.tool.E2BDataAnalysisToolArguments

Arguments for the E2BDataAnalysisTool.

tools.e2b_data_analysis.tool.UploadedFile

Description of the uploaded path with its remote path.

tools.e2b_data_analysis.unparse.Unparser(tree)

Methods in this class recursively traverse an AST and output source code for the abstract syntax; original formatting is disregarded.

tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool

Tool that queries the Eden AI Speech To Text API.

tools.edenai.audio_text_to_speech.EdenAiTextToSpeechTool

Tool that queries the Eden AI Text to speech API.

tools.edenai.edenai_base_tool.EdenaiTool

the base tool for all the EdenAI Tools .

tools.edenai.image_explicitcontent.EdenAiExplicitImageTool

Tool that queries the Eden AI Explicit image detection.

tools.edenai.image_objectdetection.EdenAiObjectDetectionTool

Tool that queries the Eden AI Object detection API.

tools.edenai.ocr_identityparser.EdenAiParsingIDTool

Tool that queries the Eden AI Identity parsing API.

tools.edenai.ocr_invoiceparser.EdenAiParsingInvoiceTool

Tool that queries the Eden AI Invoice parsing API.

tools.edenai.text_moderation.EdenAiTextModerationTool

Tool that queries the Eden AI Explicit text detection.

tools.eleven_labs.models.ElevenLabsModel(value)

Models available for Eleven Labs Text2Speech.

tools.eleven_labs.text2speech.ElevenLabsModel(value)

Models available for Eleven Labs Text2Speech.

tools.eleven_labs.text2speech.ElevenLabsText2SpeechTool

Tool that queries the Eleven Labs Text2Speech API.

tools.file_management.copy.CopyFileTool

Tool that copies a file.

tools.file_management.copy.FileCopyInput

Input for CopyFileTool.

tools.file_management.delete.DeleteFileTool

Tool that deletes a file.

tools.file_management.delete.FileDeleteInput

Input for DeleteFileTool.

tools.file_management.file_search.FileSearchInput

Input for FileSearchTool.

tools.file_management.file_search.FileSearchTool

Tool that searches for files in a subdirectory that match a regex pattern.

tools.file_management.list_dir.DirectoryListingInput

Input for ListDirectoryTool.

tools.file_management.list_dir.ListDirectoryTool

Tool that lists files and directories in a specified folder.

tools.file_management.move.FileMoveInput

Input for MoveFileTool.

tools.file_management.move.MoveFileTool

Tool that moves a file.

tools.file_management.read.ReadFileInput

Input for ReadFileTool.

tools.file_management.read.ReadFileTool

Tool that reads a file.

tools.file_management.utils.BaseFileToolMixin

Mixin for file system tools.

tools.file_management.utils.FileValidationError

Error for paths outside the root directory.

tools.file_management.write.WriteFileInput

Input for WriteFileTool.

tools.file_management.write.WriteFileTool

Tool that writes a file to disk.

tools.github.tool.GitHubAction

Tool for interacting with the GitHub API.

tools.gitlab.tool.GitLabAction

Tool for interacting with the GitLab API.

tools.gmail.base.GmailBaseTool

Base class for Gmail tools.

tools.gmail.create_draft.CreateDraftSchema

Input for CreateDraftTool.

tools.gmail.create_draft.GmailCreateDraft

Tool that creates a draft email for Gmail.

tools.gmail.get_message.GmailGetMessage

Tool that gets a message by ID from Gmail.

tools.gmail.get_message.SearchArgsSchema

Input for GetMessageTool.

tools.gmail.get_thread.GetThreadSchema

Input for GetMessageTool.

tools.gmail.get_thread.GmailGetThread

Tool that gets a thread by ID from Gmail.

tools.gmail.search.GmailSearch

Tool that searches for messages or threads in Gmail.

tools.gmail.search.Resource(value[, names, ...])

Enumerator of Resources to search.

tools.gmail.search.SearchArgsSchema

Input for SearchGmailTool.

tools.gmail.send_message.GmailSendMessage

Tool that sends a message to Gmail.

tools.gmail.send_message.SendMessageSchema

Input for SendMessageTool.

tools.golden_query.tool.GoldenQueryRun

Tool that adds the capability to query using the Golden API and get back JSON.

tools.google_cloud.texttospeech.GoogleCloudTextToSpeechTool

Tool that queries the Google Cloud Text to Speech API.

tools.google_places.tool.GooglePlacesSchema

Input for GooglePlacesTool.

tools.google_places.tool.GooglePlacesTool

Tool that queries the Google places API.

tools.google_scholar.tool.GoogleScholarQueryRun

Tool that queries the Google search API.

tools.google_search.tool.GoogleSearchResults

Tool that queries the Google Search API and gets back json.

tools.google_search.tool.GoogleSearchRun

Tool that queries the Google search API.

tools.google_serper.tool.GoogleSerperResults

Tool that queries the Serper.dev Google Search API and get back json.

tools.google_serper.tool.GoogleSerperRun

Tool that queries the Serper.dev Google search API.

tools.graphql.tool.BaseGraphQLTool

Base tool for querying a GraphQL API.

tools.human.tool.HumanInputRun

Tool that asks user for input.

tools.ifttt.IFTTTWebhook

IFTTT Webhook.

tools.jira.tool.JiraAction

Tool that queries the Atlassian Jira API.

tools.json.tool.JsonGetValueTool

Tool for getting a value in a JSON spec.

tools.json.tool.JsonListKeysTool

Tool for listing keys in a JSON spec.

tools.json.tool.JsonSpec

Base class for JSON spec.

tools.memorize.tool.Memorize

Create a new model by parsing and validating input data from keyword arguments.

tools.memorize.tool.TrainableLLM(*args, **kwargs)

tools.metaphor_search.tool.MetaphorSearchResults

Tool that queries the Metaphor Search API and gets back json.

tools.multion.close_session.CloseSessionSchema

Input for UpdateSessionTool.

tools.multion.close_session.MultionCloseSession

Tool that closes an existing Multion Browser Window with provided fields.

tools.multion.create_session.CreateSessionSchema

Input for CreateSessionTool.

tools.multion.create_session.MultionCreateSession

Tool that creates a new Multion Browser Window with provided fields.

tools.multion.update_session.MultionUpdateSession

Tool that updates an existing Multion Browser Window with provided fields.

tools.multion.update_session.UpdateSessionSchema

Input for UpdateSessionTool.

tools.nuclia.tool.NUASchema

Input for Nuclia Understanding API.

tools.nuclia.tool.NucliaUnderstandingAPI

Tool to process files with the Nuclia Understanding API.

tools.office365.base.O365BaseTool

Base class for the Office 365 tools.

tools.office365.create_draft_message.CreateDraftMessageSchema

Input for SendMessageTool.

tools.office365.create_draft_message.O365CreateDraftMessage

Tool for creating a draft email in Office 365.

tools.office365.events_search.O365SearchEvents

Class for searching calendar events in Office 365

tools.office365.events_search.SearchEventsInput

Input for SearchEmails Tool.

tools.office365.messages_search.O365SearchEmails

Class for searching email messages in Office 365

tools.office365.messages_search.SearchEmailsInput

Input for SearchEmails Tool.

tools.office365.send_event.O365SendEvent

Tool for sending calendar events in Office 365.

tools.office365.send_event.SendEventSchema

Input for CreateEvent Tool.

tools.office365.send_message.O365SendMessage

Tool for sending an email in Office 365.

tools.office365.send_message.SendMessageSchema

Input for SendMessageTool.

tools.openapi.utils.api_models.APIOperation

A model for a single API operation.

tools.openapi.utils.api_models.APIProperty

A model for a property in the query, path, header, or cookie params.

tools.openapi.utils.api_models.APIPropertyBase

Base model for an API property.

tools.openapi.utils.api_models.APIPropertyLocation(value)

The location of the property.

tools.openapi.utils.api_models.APIRequestBody

A model for a request body.

tools.openapi.utils.api_models.APIRequestBodyProperty

A model for a request body property.

tools.openweathermap.tool.OpenWeatherMapQueryRun

Tool that queries the OpenWeatherMap API.

tools.playwright.base.BaseBrowserTool

Base class for browser tools.

tools.playwright.click.ClickTool

Tool for clicking on an element with the given CSS selector.

tools.playwright.click.ClickToolInput

Input for ClickTool.

tools.playwright.current_page.CurrentWebPageTool

Tool for getting the URL of the current webpage.

tools.playwright.extract_hyperlinks.ExtractHyperlinksTool

Extract all hyperlinks on the page.

tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput

Input for ExtractHyperlinksTool.

tools.playwright.extract_text.ExtractTextTool

Tool for extracting all the text on the current webpage.

tools.playwright.get_elements.GetElementsTool

Tool for getting elements in the current web page matching a CSS selector.

tools.playwright.get_elements.GetElementsToolInput

Input for GetElementsTool.

tools.playwright.navigate.NavigateTool

Tool for navigating a browser to a URL.

tools.playwright.navigate.NavigateToolInput

Input for NavigateToolInput.

tools.playwright.navigate_back.NavigateBackTool

Navigate back to the previous page in the browser history.

tools.plugin.AIPlugin

AI Plugin Definition.

tools.plugin.AIPluginTool

Tool for getting the OpenAPI spec for an AI Plugin.

tools.plugin.AIPluginToolSchema

Schema for AIPluginTool.

tools.plugin.ApiConfig

API Configuration.

tools.powerbi.tool.InfoPowerBITool

Tool for getting metadata about a PowerBI Dataset.

tools.powerbi.tool.ListPowerBITool

Tool for getting tables names.

tools.powerbi.tool.QueryPowerBITool

Tool for querying a Power BI Dataset.

tools.pubmed.tool.PubmedQueryRun

Tool that searches the PubMed API.

tools.requests.tool.BaseRequestsTool

Base class for requests tools.

tools.requests.tool.RequestsDeleteTool

Tool for making a DELETE request to an API endpoint.

tools.requests.tool.RequestsGetTool

Tool for making a GET request to an API endpoint.

tools.requests.tool.RequestsPatchTool

Tool for making a PATCH request to an API endpoint.

tools.requests.tool.RequestsPostTool

Tool for making a POST request to an API endpoint.

tools.requests.tool.RequestsPutTool

Tool for making a PUT request to an API endpoint.

tools.retriever.RetrieverInput

Create a new model by parsing and validating input data from keyword arguments.

tools.scenexplain.tool.SceneXplainInput

Input for SceneXplain.

tools.scenexplain.tool.SceneXplainTool

Tool that explains images.

tools.searchapi.tool.SearchAPIResults

Tool that queries the SearchApi.io search API and returns JSON.

tools.searchapi.tool.SearchAPIRun

Tool that queries the SearchApi.io search API.

tools.searx_search.tool.SearxSearchResults

Tool that queries a Searx instance and gets back json.

tools.searx_search.tool.SearxSearchRun

Tool that queries a Searx instance.

tools.shell.tool.ShellInput

Commands for the Bash Shell tool.

tools.shell.tool.ShellTool

Tool to run shell commands.

tools.sleep.tool.SleepInput

Input for CopyFileTool.

tools.sleep.tool.SleepTool

Tool that adds the capability to sleep.

tools.spark_sql.tool.BaseSparkSQLTool

Base tool for interacting with Spark SQL.

tools.spark_sql.tool.InfoSparkSQLTool

Tool for getting metadata about a Spark SQL.

tools.spark_sql.tool.ListSparkSQLTool

Tool for getting tables names.

tools.spark_sql.tool.QueryCheckerTool

Use an LLM to check if a query is correct.

tools.spark_sql.tool.QuerySparkSQLTool

Tool for querying a Spark SQL.

tools.sql_database.tool.BaseSQLDatabaseTool

Base tool for interacting with a SQL database.

tools.sql_database.tool.InfoSQLDatabaseTool

Tool for getting metadata about a SQL database.

tools.sql_database.tool.ListSQLDatabaseTool

Tool for getting tables names.

tools.sql_database.tool.QuerySQLCheckerTool

Use an LLM to check if a query is correct.

tools.sql_database.tool.QuerySQLDataBaseTool

Tool for querying a SQL database.

tools.steamship_image_generation.tool.ModelName(value)

Supported Image Models for generation.

tools.steamship_image_generation.tool.SteamshipImageGenerationTool

Tool used to generate images from a text-prompt.

tools.tavily_search.tool.TavilyAnswer

Tool that queries the Tavily Search API and gets back an answer.

tools.tavily_search.tool.TavilyInput

Create a new model by parsing and validating input data from keyword arguments.

tools.tavily_search.tool.TavilySearchResults

Tool that queries the Tavily Search API and gets back json.

tools.vectorstore.tool.BaseVectorStoreTool

Base class for tools that use a VectorStore.

tools.vectorstore.tool.VectorStoreQATool

Tool for the VectorDBQA chain.

tools.vectorstore.tool.VectorStoreQAWithSourcesTool

Tool for the VectorDBQAWithSources chain.

tools.wikipedia.tool.WikipediaQueryRun

Tool that searches the Wikipedia API.

tools.wolfram_alpha.tool.WolframAlphaQueryRun

Tool that queries using the Wolfram Alpha SDK.

tools.yahoo_finance_news.YahooFinanceNewsTool

Tool that searches financial news on Yahoo Finance.

tools.youtube.search.YouTubeSearchTool

Tool that queries YouTube.

tools.zapier.tool.ZapierNLAListActions

Returns a list of all exposed (enabled) actions associated with

tools.zapier.tool.ZapierNLARunAction

Executes an action that is identified by action_id, must be exposed

Functions

tools.ainetwork.utils.authenticate([network])

Authenticate using the AIN Blockchain

tools.amadeus.utils.authenticate()

Authenticate using the Amadeus API

tools.azure_cognitive_services.utils.detect_file_src_type(...)

Detect if the file is local or remote.

tools.azure_cognitive_services.utils.download_audio_from_url(...)

Download audio from url to local.

tools.bearly.tool.file_to_base64(path)

Convert a file to base64.

tools.bearly.tool.head_file(path, n)

Get the first n lines of a file.

tools.bearly.tool.strip_markdown_code(md_string)

Strip markdown code from a string.

tools.ddg_search.tool.DuckDuckGoSearchTool(...)

Deprecated.

tools.e2b_data_analysis.tool.add_last_line_print(code)

Add print statement to the last line if it's missing.

tools.e2b_data_analysis.unparse.interleave(...)

Call f on each item in seq, calling inter() in between.

tools.e2b_data_analysis.unparse.roundtrip(...)

tools.file_management.utils.get_validated_relative_path(...)

Resolve a relative path, raising an error if not within the root directory.

tools.file_management.utils.is_relative_to(...)

Check if path is relative to root.

tools.gmail.utils.build_resource_service([...])

Build a Gmail service.

tools.gmail.utils.clean_email_body(body)

Clean email body.

tools.gmail.utils.get_gmail_credentials([...])

Get credentials.

tools.gmail.utils.import_google()

Import google libraries.

tools.gmail.utils.import_googleapiclient_resource_builder()

Import googleapiclient.discovery.build function.

tools.gmail.utils.import_installed_app_flow()

Import InstalledAppFlow class.

tools.interaction.tool.StdInInquireTool(...)

Tool for asking the user for input.

tools.office365.utils.authenticate()

Authenticate using the Microsoft Grah API

tools.office365.utils.clean_body(body)

Clean body of a message or event.

tools.playwright.base.lazy_import_playwright_browsers()

Lazy import playwright browsers.

tools.playwright.utils.aget_current_page(browser)

Asynchronously get the current page of the browser.

tools.playwright.utils.create_async_playwright_browser([...])

Create an async playwright browser.

tools.playwright.utils.create_sync_playwright_browser([...])

Create a playwright browser.

tools.playwright.utils.get_current_page(browser)

Get the current page of the browser.

tools.playwright.utils.run_async(coro)

Run an async coroutine.

tools.plugin.marshal_spec(txt)

Convert the yaml or json serialized spec to a dict.

tools.render.format_tool_to_openai_function(tool)

Format tool into the OpenAI function API.

tools.render.format_tool_to_openai_tool(tool)

Format tool into the OpenAI function API.

tools.render.render_text_description(tools)

Render the tool name and description in plain text.

tools.render.render_text_description_and_args(tools)

Render the tool name, description, and args in plain text.

tools.retriever.create_retriever_tool(...)

Create a tool to do retrieval of documents.

tools.steamship_image_generation.utils.make_image_public(...)

Upload a block to a signed URL and return the public URL.

langchain.tools.render

Different methods for rendering Tools to be passed to LLMs.

Depending on the LLM you are using and the prompting strategy you are using, you may want Tools to be rendered in a different way. This module contains various ways to render tools.

Functions

tools.render.format_tool_to_openai_function(tool)

Format tool into the OpenAI function API.

tools.render.format_tool_to_openai_tool(tool)

Format tool into the OpenAI function API.

tools.render.render_text_description(tools)

Render the tool name and description in plain text.

tools.render.render_text_description_and_args(tools)

Render the tool name, description, and args in plain text.

langchain.utilities

Utilities are the integrations with third-part systems and packages.

Other LangChain classes use Utilities to interact with third-part systems and packages.

Classes

utilities.alpha_vantage.AlphaVantageAPIWrapper

Wrapper for AlphaVantage API for Currency Exchange Rate.

utilities.apify.ApifyWrapper

Wrapper around Apify.

utilities.arcee.ArceeDocument

Arcee document.

utilities.arcee.ArceeDocumentAdapter()

Adapter for Arcee documents

utilities.arcee.ArceeDocumentSource

Source of an Arcee document.

utilities.arcee.ArceeRoute(value[, names, ...])

Routes available for the Arcee API as enumerator.

utilities.arcee.ArceeWrapper(arcee_api_key, ...)

Wrapper for Arcee API.

utilities.arcee.DALMFilter

Filters available for a DALM retrieval and generation.

utilities.arcee.DALMFilterType(value[, ...])

Filter types available for a DALM retrieval as enumerator.

utilities.arxiv.ArxivAPIWrapper

Wrapper around ArxivAPI.

utilities.awslambda.LambdaWrapper

Wrapper for AWS Lambda SDK.

utilities.bibtex.BibtexparserWrapper

Wrapper around bibtexparser.

utilities.bing_search.BingSearchAPIWrapper

Wrapper for Bing Search API.

utilities.brave_search.BraveSearchWrapper

Wrapper around the Brave search engine.

utilities.clickup.CUList(folder_id, name[, ...])

Component class for a list.

utilities.clickup.ClickupAPIWrapper

Wrapper for Clickup API.

utilities.clickup.Component()

Base class for all components.

utilities.clickup.Member(id, username, ...)

Component class for a member.

utilities.clickup.Space(id, name, private, ...)

Component class for a space.

utilities.clickup.Task(id, name, ...)

Class for a task.

utilities.clickup.Team(id, name, members)

Component class for a team.

utilities.dalle_image_generator.DallEAPIWrapper

Wrapper for OpenAI's DALL-E Image Generator.

utilities.dataforseo_api_search.DataForSeoAPIWrapper

Wrapper around the DataForSeo API.

utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper

Wrapper for DuckDuckGo Search API.

utilities.github.GitHubAPIWrapper

Wrapper for GitHub API.

utilities.gitlab.GitLabAPIWrapper

Wrapper for GitLab API.

utilities.golden_query.GoldenQueryAPIWrapper

Wrapper for Golden.

utilities.google_places_api.GooglePlacesAPIWrapper

Wrapper around Google Places API.

utilities.google_scholar.GoogleScholarAPIWrapper

Wrapper for Google Scholar API

utilities.google_search.GoogleSearchAPIWrapper

Wrapper for Google Search API.

utilities.google_serper.GoogleSerperAPIWrapper

Wrapper around the Serper.dev Google Search API.

utilities.graphql.GraphQLAPIWrapper

Wrapper around GraphQL API.

utilities.jira.JiraAPIWrapper

Wrapper for Jira API.

utilities.max_compute.MaxComputeAPIWrapper(client)

Interface for querying Alibaba Cloud MaxCompute tables.

utilities.metaphor_search.MetaphorSearchAPIWrapper

Wrapper for Metaphor Search API.

utilities.openapi.HTTPVerb(value[, names, ...])

Enumerator of the HTTP verbs.

utilities.openapi.OpenAPISpec()

OpenAPI Model that removes mis-formatted parts of the spec.

utilities.openweathermap.OpenWeatherMapAPIWrapper

Wrapper for OpenWeatherMap API using PyOWM.

utilities.portkey.Portkey()

Portkey configuration.

utilities.powerbi.PowerBIDataset

Create PowerBI engine from dataset ID and credential or token.

utilities.pubmed.PubMedAPIWrapper

Wrapper around PubMed API.

utilities.python.PythonREPL

Simulates a standalone Python REPL.

utilities.redis.TokenEscaper([escape_chars_re])

Escape punctuation within an input string.

utilities.requests.Requests

Wrapper around requests to handle auth and async.

utilities.requests.RequestsWrapper

alias of TextRequestsWrapper

utilities.requests.TextRequestsWrapper

Lightweight wrapper around requests library.

utilities.scenexplain.SceneXplainAPIWrapper

Wrapper for SceneXplain API.

utilities.searchapi.SearchApiAPIWrapper

Wrapper around SearchApi API.

utilities.searx_search.SearxResults(data)

Dict like wrapper around search api results.

utilities.searx_search.SearxSearchWrapper

Wrapper for Searx API.

utilities.serpapi.HiddenPrints()

Context manager to hide prints.

utilities.serpapi.SerpAPIWrapper

Wrapper around SerpAPI.

utilities.spark_sql.SparkSQL([...])

SparkSQL is a utility class for interacting with Spark SQL.

utilities.sql_database.SQLDatabase(engine[, ...])

SQLAlchemy wrapper around a database.

utilities.tavily_search.TavilySearchAPIWrapper

Wrapper for Tavily Search API.

utilities.tensorflow_datasets.TensorflowDatasets

Access to the TensorFlow Datasets.

utilities.twilio.TwilioAPIWrapper

Messaging Client using Twilio.

utilities.wikipedia.WikipediaAPIWrapper

Wrapper around WikipediaAPI.

utilities.wolfram_alpha.WolframAlphaAPIWrapper

Wrapper for Wolfram Alpha.

utilities.zapier.ZapierNLAWrapper

Wrapper for Zapier NLA.

Functions

utilities.anthropic.get_num_tokens_anthropic(text)

Get the number of tokens in a string of text.

utilities.anthropic.get_token_ids_anthropic(text)

Get the token ids for a string of text.

utilities.clickup.extract_dict_elements_from_component_fields(...)

Extract elements from a dictionary.

utilities.clickup.fetch_data(url, access_token)

Fetch data from a URL.

utilities.clickup.fetch_first_id(data, key)

Fetch the first id from a dictionary.

utilities.clickup.fetch_folder_id(space_id, ...)

Fetch the folder id.

utilities.clickup.fetch_list_id(space_id, ...)

Fetch the list id.

utilities.clickup.fetch_space_id(team_id, ...)

Fetch the space id.

utilities.clickup.fetch_team_id(access_token)

Fetch the team id.

utilities.clickup.load_query(query[, ...])

Attempts to parse a JSON string and return the parsed object.

utilities.clickup.parse_dict_through_component(...)

Parse a dictionary by creating a component and then turning it back into a dictionary.

utilities.opaqueprompts.desanitize(...)

Restore the original sensitive data from the sanitized text.

utilities.opaqueprompts.sanitize(input)

Sanitize input string or dict of strings by replacing sensitive data with placeholders.

utilities.powerbi.fix_table_name(table)

Add single quotes around table names that contain spaces.

utilities.powerbi.json_to_md(json_contents)

Converts a JSON object to a markdown table.

utilities.redis.check_redis_module_exist(...)

Check if the correct Redis modules are installed.

utilities.redis.get_client(redis_url, **kwargs)

Get a redis client from the connection url given.

utilities.sql_database.truncate_word(...[, ...])

Truncate a string to a certain number of words, based on the max string length.

utilities.vertexai.get_client_info([module])

Returns a custom user agent header.

utilities.vertexai.init_vertexai([project, ...])

Init vertexai.

utilities.vertexai.raise_vertex_import_error([...])

Raise ImportError related to Vertex SDK being not available.

langchain.utils

Utility functions for LangChain.

These functions do not depend on any other LangChain module.

Classes

utils.ernie_functions.FunctionDescription

Representation of a callable function to the Ernie API.

utils.ernie_functions.ToolDescription

Representation of a callable function to the Ernie API.

utils.openai_functions.FunctionDescription

Representation of a callable function to the OpenAI API.

utils.openai_functions.ToolDescription

Representation of a callable function to the OpenAI API.

Functions

utils.env.get_from_dict_or_env(data, key, ...)

Get a value from a dictionary or an environment variable.

utils.env.get_from_env(key, env_key[, default])

Get a value from a dictionary or an environment variable.

utils.ernie_functions.convert_pydantic_to_ernie_function(...)

Converts a Pydantic model to a function description for the Ernie API.

utils.ernie_functions.convert_pydantic_to_ernie_tool(...)

Converts a Pydantic model to a function description for the Ernie API.

utils.html.extract_sub_links(raw_html, url, *)

Extract all links from a raw html string and convert into absolute paths.

utils.html.find_all_links(raw_html, *[, pattern])

Extract all links from a raw html string.

utils.json_schema.dereference_refs(schema_obj, *)

Try to substitute $refs in JSON Schema.

utils.math.cosine_similarity(X, Y)

Row-wise cosine similarity between two equal-width matrices.

utils.math.cosine_similarity_top_k(X, Y[, ...])

Row-wise cosine similarity with optional top-k and score threshold filtering.

utils.openai.is_openai_v1()

utils.openai_functions.convert_pydantic_to_openai_function(...)

Converts a Pydantic model to a function description for the OpenAI API.

utils.openai_functions.convert_pydantic_to_openai_tool(...)

Converts a Pydantic model to a function description for the OpenAI API.

utils.strings.comma_list(items)

Convert a list to a comma-separated string.

utils.strings.stringify_dict(data)

Stringify a dictionary.

utils.strings.stringify_value(val)

Stringify a value.

langchain.vectorstores

Vector store stores embedded data and performs vector search.

One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors, and then query the store and retrieve the data that are ‘most similar’ to the embedded query.

Class hierarchy:

VectorStore --> <name>  # Examples: Annoy, FAISS, Milvus

BaseRetriever --> VectorStoreRetriever --> <name>Retriever  # Example: VespaRetriever

Main helpers:

Embeddings, Document

Classes

vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(...)

Alibaba Cloud OpenSearch vector store.

vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings(...)

Alibaba Cloud Opensearch` client configuration.

vectorstores.analyticdb.AnalyticDB(...[, ...])

AnalyticDB (distributed PostgreSQL) vector store.

vectorstores.annoy.Annoy(embedding_function, ...)

Annoy vector store.

vectorstores.astradb.AstraDB(*, embedding, ...)

Wrapper around DataStax Astra DB for vector-store workloads.

vectorstores.atlas.AtlasDB(name[, ...])

Atlas vector store.

vectorstores.awadb.AwaDB([table_name, ...])

AwaDB vector store.

vectorstores.azure_cosmos_db.AzureCosmosDBVectorSearch(...)

Azure Cosmos DB for MongoDB vCore vector store.

vectorstores.azure_cosmos_db.CosmosDBSimilarityType(value)

Cosmos DB Similarity Type as enumerator.

vectorstores.azuresearch.AzureSearch(...[, ...])

Azure Cognitive Search vector store.

vectorstores.azuresearch.AzureSearchVectorStoreRetriever

Retriever that uses Azure Cognitive Search.

vectorstores.bageldb.Bagel([cluster_name, ...])

BagelDB.ai vector store.

vectorstores.baiducloud_vector_search.BESVectorStore(...)

Baidu Elasticsearch vector store.

vectorstores.cassandra.Cassandra(embedding, ...)

Wrapper around Apache Cassandra(R) for vector-store workloads.

vectorstores.chroma.Chroma([...])

ChromaDB vector store.

vectorstores.clarifai.Clarifai([user_id, ...])

Clarifai AI vector store.

vectorstores.clickhouse.Clickhouse(embedding)

ClickHouse VectorSearch vector store.

vectorstores.clickhouse.ClickhouseSettings

ClickHouse client configuration.

vectorstores.dashvector.DashVector(...)

DashVector vector store.

vectorstores.deeplake.DeepLake([...])

Activeloop Deep Lake vector store.

vectorstores.dingo.Dingo(embedding, text_key, *)

Dingo vector store.

vectorstores.docarray.base.DocArrayIndex(...)

Base class for DocArray based vector stores.

vectorstores.docarray.hnsw.DocArrayHnswSearch(...)

HnswLib storage using DocArray package.

vectorstores.docarray.in_memory.DocArrayInMemorySearch(...)

In-memory DocArray storage for exact search.

vectorstores.elastic_vector_search.ElasticKnnSearch(...)

[Deprecated] [DEPRECATED] Elasticsearch with k-nearest neighbor search (k-NN) vector store.

vectorstores.elastic_vector_search.ElasticVectorSearch(...)

ElasticVectorSearch uses the brute force method of searching on vectors.

vectorstores.elasticsearch.ApproxRetrievalStrategy([...])

Approximate retrieval strategy using the HNSW algorithm.

vectorstores.elasticsearch.BaseRetrievalStrategy()

Base class for Elasticsearch retrieval strategies.

vectorstores.elasticsearch.ElasticsearchStore(...)

Elasticsearch vector store.

vectorstores.elasticsearch.ExactRetrievalStrategy()

Exact retrieval strategy using the script_score query.

vectorstores.elasticsearch.SparseRetrievalStrategy([...])

Sparse retrieval strategy using the text_expansion processor.

vectorstores.epsilla.Epsilla(client, embeddings)

Wrapper around Epsilla vector database.

vectorstores.faiss.FAISS(embedding_function, ...)

Meta Faiss vector store.

vectorstores.hippo.Hippo(embedding_function)

Hippo vector store.

vectorstores.hologres.Hologres(...[, ndims, ...])

Hologres API vector store.

vectorstores.hologres.HologresWrapper(...)

Hologres API wrapper.

vectorstores.lancedb.LanceDB(connection, ...)

LanceDB vector store.

vectorstores.llm_rails.LLMRails([...])

Implementation of Vector Store using LLMRails.

vectorstores.llm_rails.LLMRailsRetriever

Retriever for LLMRails.

vectorstores.marqo.Marqo(client, index_name)

Marqo vector store.

vectorstores.matching_engine.MatchingEngine(...)

Google Vertex AI Matching Engine vector store.

vectorstores.meilisearch.Meilisearch(embedding)

Meilisearch vector store.

vectorstores.milvus.Milvus(embedding_function)

Milvus vector store.

vectorstores.momento_vector_index.MomentoVectorIndex(...)

Momento Vector Index (MVI) vector store.

vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch(...)

MongoDB Atlas Vector Search vector store.

vectorstores.myscale.MyScale(embedding[, config])

MyScale vector store.

vectorstores.myscale.MyScaleSettings

MyScale client configuration.

vectorstores.myscale.MyScaleWithoutJSON(...)

MyScale vector store without metadata column

vectorstores.neo4j_vector.Neo4jVector(...[, ...])

Neo4j vector index.

vectorstores.neo4j_vector.SearchType(value)

Enumerator of the Distance strategies.

vectorstores.nucliadb.NucliaDB(...[, ...])

NucliaDB vector store.

vectorstores.opensearch_vector_search.OpenSearchVectorSearch(...)

Amazon OpenSearch Vector Engine vector store.

vectorstores.pgembedding.BaseModel(**kwargs)

Base model for all SQL stores.

vectorstores.pgembedding.CollectionStore(...)

Collection store.

vectorstores.pgembedding.EmbeddingStore(**kwargs)

Embedding store.

vectorstores.pgembedding.PGEmbedding(...[, ...])

Postgres with the pg_embedding extension as a vector store.

vectorstores.pgembedding.QueryResult()

Result from a query.

vectorstores.pgvecto_rs.PGVecto_rs(...[, ...])

vectorstores.pgvector.BaseModel(**kwargs)

Base model for the SQL stores.

vectorstores.pgvector.DistanceStrategy(value)

Enumerator of the Distance strategies.

vectorstores.pgvector.PGVector(...[, ...])

Postgres/PGVector vector store.

vectorstores.pinecone.Pinecone(index, ...[, ...])

Pinecone vector store.

vectorstores.qdrant.Qdrant(client, ...[, ...])

Qdrant vector store.

vectorstores.qdrant.QdrantException

Qdrant related exceptions.

vectorstores.redis.base.Redis(redis_url, ...)

Redis vector database.

vectorstores.redis.base.RedisVectorStoreRetriever

Retriever for Redis VectorStore.

vectorstores.redis.filters.RedisFilter()

Collection of RedisFilterFields.

vectorstores.redis.filters.RedisFilterExpression([...])

A logical expression of RedisFilterFields.

vectorstores.redis.filters.RedisFilterField(field)

Base class for RedisFilterFields.

vectorstores.redis.filters.RedisFilterOperator(value)

RedisFilterOperator enumerator is used to create RedisFilterExpressions.

vectorstores.redis.filters.RedisNum(field)

A RedisFilterField representing a numeric field in a Redis index.

vectorstores.redis.filters.RedisTag(field)

A RedisFilterField representing a tag in a Redis index.

vectorstores.redis.filters.RedisText(field)

A RedisFilterField representing a text field in a Redis index.

vectorstores.redis.schema.FlatVectorField

Schema for flat vector fields in Redis.

vectorstores.redis.schema.HNSWVectorField

Schema for HNSW vector fields in Redis.

vectorstores.redis.schema.NumericFieldSchema

Schema for numeric fields in Redis.

vectorstores.redis.schema.RedisDistanceMetric(value)

Distance metrics for Redis vector fields.

vectorstores.redis.schema.RedisField

Base class for Redis fields.

vectorstores.redis.schema.RedisModel

Schema for Redis index.

vectorstores.redis.schema.RedisVectorField

Base class for Redis vector fields.

vectorstores.redis.schema.TagFieldSchema

Schema for tag fields in Redis.

vectorstores.redis.schema.TextFieldSchema

Schema for text fields in Redis.

vectorstores.rocksetdb.Rockset(client, ...)

Rockset vector store.

vectorstores.scann.ScaNN(embedding, index, ...)

ScaNN vector store.

vectorstores.semadb.SemaDB(collection_name, ...)

SemaDB vector store.

vectorstores.singlestoredb.SingleStoreDB(...)

SingleStore DB vector store.

vectorstores.sklearn.BaseSerializer(persist_path)

Base class for serializing data.

vectorstores.sklearn.BsonSerializer(persist_path)

Serializes data in binary json using the bson python package.

vectorstores.sklearn.JsonSerializer(persist_path)

Serializes data in json using the json package from python standard library.

vectorstores.sklearn.ParquetSerializer(...)

Serializes data in Apache Parquet format using the pyarrow package.

vectorstores.sklearn.SKLearnVectorStore(...)

Simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation.

vectorstores.sklearn.SKLearnVectorStoreException

Exception raised by SKLearnVectorStore.

vectorstores.sqlitevss.SQLiteVSS(table, ...)

Wrapper around SQLite with vss extension as a vector database.

vectorstores.starrocks.StarRocks(embedding)

StarRocks vector store.

vectorstores.starrocks.StarRocksSettings

StarRocks client configuration.

vectorstores.supabase.SupabaseVectorStore(...)

Supabase Postgres vector store.

vectorstores.tair.Tair(embedding_function, ...)

Tair vector store.

vectorstores.tencentvectordb.ConnectionParams(...)

Tencent vector DB Connection params.

vectorstores.tencentvectordb.IndexParams(...)

Tencent vector DB Index params.

vectorstores.tencentvectordb.TencentVectorDB(...)

Initialize wrapper around the tencent vector database.

vectorstores.tigris.Tigris(client, ...)

Tigris vector store.

vectorstores.tiledb.TileDB(embedding, ...[, ...])

Wrapper around TileDB vector database.

vectorstores.timescalevector.TimescaleVector(...)

VectorStore implementation using the timescale vector client to store vectors in Postgres.

vectorstores.typesense.Typesense(...[, ...])

Typesense vector store.

vectorstores.usearch.USearch(embedding, ...)

USearch vector store.

vectorstores.utils.DistanceStrategy(value[, ...])

Enumerator of the Distance strategies for calculating distances between vectors.

vectorstores.vald.Vald(embedding[, host, ...])

Wrapper around Vald vector database.

vectorstores.vearch.Vearch(embedding_function)

Initialize vearch vector store flag 1 for cluster,0 for standalone

vectorstores.vectara.Vectara([...])

Vectara API vector store.

vectorstores.vectara.VectaraRetriever

Retriever class for Vectara.

vectorstores.vespa.VespaStore(app[, ...])

Vespa vector store.

vectorstores.weaviate.Weaviate(client, ...)

Weaviate vector store.

vectorstores.xata.XataVectorStore(api_key, ...)

Xata vector store.

vectorstores.zep.CollectionConfig(name, ...)

Configuration for a Zep Collection.

vectorstores.zep.ZepVectorStore(...[, ...])

Zep vector store.

vectorstores.zilliz.Zilliz(embedding_function)

Zilliz vector store.

Functions

vectorstores.alibabacloud_opensearch.create_metadata(fields)

Create metadata from fields.

vectorstores.annoy.dependable_annoy_import()

Import annoy if available, otherwise raise error.

vectorstores.clickhouse.has_mul_sub_str(s, *args)

Check if a string contains multiple substrings.

vectorstores.faiss.dependable_faiss_import([...])

Import faiss if available, otherwise raise error.

vectorstores.myscale.has_mul_sub_str(s, *args)

Check if a string contains multiple substrings.

vectorstores.neo4j_vector.check_if_not_null(...)

Check if the values are not None or empty string

vectorstores.neo4j_vector.sort_by_index_name(...)

Sort first element to match the index_name if exists

vectorstores.qdrant.sync_call_fallback(method)

Decorator to call the synchronous method of the class if the async method is not implemented.

vectorstores.redis.base.check_index_exists(...)

Check if Redis index exists.

vectorstores.redis.filters.check_operator_misuse(func)

Decorator to check for misuse of equality operators.

vectorstores.redis.schema.read_schema(...)

Reads in the index schema from a dict or yaml file.

vectorstores.scann.dependable_scann_import()

Import scann if available, otherwise raise error.

vectorstores.scann.normalize(x)

Normalize vectors to unit length.

vectorstores.starrocks.debug_output(s)

Print a debug message if DEBUG is True.

vectorstores.starrocks.get_named_result(...)

Get a named result from a query.

vectorstores.starrocks.has_mul_sub_str(s, *args)

Check if a string has multiple substrings.

vectorstores.tiledb.dependable_tiledb_import()

Import tiledb-vector-search if available, otherwise raise error.

vectorstores.tiledb.get_documents_array_uri(uri)

vectorstores.tiledb.get_documents_array_uri_from_group(group)

vectorstores.tiledb.get_vector_index_uri(uri)

vectorstores.tiledb.get_vector_index_uri_from_group(group)

vectorstores.usearch.dependable_usearch_import()

Import usearch if available, otherwise raise error.

vectorstores.utils.filter_complex_metadata(...)

Filter out metadata types that are not supported for a vector store.

vectorstores.utils.maximal_marginal_relevance(...)

Calculate maximal marginal relevance.