langchain.agents.structured_chat.base
.StructuredChatAgent¶
- class langchain.agents.structured_chat.base.StructuredChatAgent[source]¶
Bases:
Agent
Deprecated since version 0.1.0: Use
create_structured_chat_agent
instead.Structured Chat Agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param allowed_tools: Optional[List[str]] = None¶
Allowed tools for the agent. If None, all tools are allowed.
- param output_parser: AgentOutputParser [Optional]¶
Output parser for the agent.
- async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish] ¶
Async given input, decided what to do.
- Parameters
intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to run.
**kwargs (Any) – User inputs.
- Returns
Action specifying what tool to use.
- Return type
Union[AgentAction, AgentFinish]
- classmethod create_prompt(tools: Sequence[BaseTool], prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None) BasePromptTemplate [source]¶
Create a prompt for this class.
- Parameters
tools (Sequence[BaseTool]) – Tools to use.
prefix (str) –
suffix (str) –
human_message_template (str) –
format_instructions (str) –
input_variables (Optional[List[str]]) –
memory_prompts (Optional[List[BasePromptTemplate]]) –
- Returns
Prompt template.
- Return type
- classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:', suffix: str = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:', human_message_template: str = '{input}\n\n{agent_scratchpad}', format_instructions: str = 'Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).\n\nValid "action" values: "Final Answer" or {tool_names}\n\nProvide only ONE action per $JSON_BLOB, as shown:\n\n```\n{{{{\n "action": $TOOL_NAME,\n "action_input": $INPUT\n}}}}\n```\n\nFollow this format:\n\nQuestion: input question to answer\nThought: consider previous and subsequent steps\nAction:\n```\n$JSON_BLOB\n```\nObservation: action result\n... (repeat Thought/Action/Observation N times)\nThought: I know what to respond\nAction:\n```\n{{{{\n "action": "Final Answer",\n "action_input": "Final response to human"\n}}}}\n```', input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, **kwargs: Any) Agent [source]¶
Construct an agent from an LLM and tools.
- Parameters
llm (BaseLanguageModel) –
tools (Sequence[BaseTool]) –
callback_manager (Optional[BaseCallbackManager]) –
output_parser (Optional[AgentOutputParser]) –
prefix (str) –
suffix (str) –
human_message_template (str) –
format_instructions (str) –
input_variables (Optional[List[str]]) –
memory_prompts (Optional[List[BasePromptTemplate]]) –
kwargs (Any) –
- Return type
- get_allowed_tools() Optional[List[str]] ¶
Get allowed tools.
- Return type
Optional[List[str]]
- get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) Dict[str, Any] ¶
Create the full inputs for the LLMChain from intermediate steps.
- Parameters
intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.
**kwargs (Any) – User inputs.
- Returns
Full inputs for the LLMChain.
- Return type
Dict[str, Any]
- plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish] ¶
Given input, decided what to do.
- Parameters
intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to run.
**kwargs (Any) – User inputs.
- Returns
Action specifying what tool to use.
- Return type
Union[AgentAction, AgentFinish]
- return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinish ¶
Return response when agent has been stopped due to max iterations.
- Parameters
early_stopping_method (str) – Method to use for early stopping.
intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.
**kwargs (Any) – User inputs.
- Returns
Agent finish object.
- Return type
- Raises
ValueError – If early_stopping_method is not in [‘force’, ‘generate’].
- save(file_path: Union[Path, str]) None ¶
Save the agent.
- Parameters
file_path (Union[Path, str]) – Path to file to save the agent to.
- Return type
None
Example: .. code-block:: python
# If working with agent executor agent.agent.save(file_path=”path/agent.yaml”)
- tool_run_logging_kwargs() Dict ¶
Return logging kwargs for tool run.
- Return type
Dict
- property llm_prefix: str¶
Prefix to append the llm call with.
- property observation_prefix: str¶
Prefix to append the observation with.
- property return_values: List[str]¶
Return values of the agent.