langchain.agents.react.base.ReActDocstoreAgent

class langchain.agents.react.base.ReActDocstoreAgent[source]

Bases: Agent

Deprecated since version 0.1.0.

Agent for the ReAct chain.

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

param allowed_tools: Optional[List[str]] = None

Allowed tools for the agent. If None, all tools are allowed.

param llm_chain: LLMChain [Required]

LLMChain to use for agent.

param output_parser: AgentOutputParser [Optional]

Output parser to use for agent.

async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish]

Async given input, decided what to do.

Parameters
Returns

Action specifying what tool to use.

Return type

Union[AgentAction, AgentFinish]

classmethod create_prompt(tools: Sequence[BaseTool]) BasePromptTemplate[source]

Return default prompt.

Parameters

tools (Sequence[BaseTool]) –

Return type

BasePromptTemplate

classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any) Agent

Construct an agent from an LLM and tools.

Parameters
Returns

Agent object.

Return type

Agent

get_allowed_tools() Optional[List[str]]

Get allowed tools.

Return type

Optional[List[str]]

get_full_inputs(intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) Dict[str, Any]

Create the full inputs for the LLMChain from intermediate steps.

Parameters
  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.

  • **kwargs (Any) – User inputs.

Returns

Full inputs for the LLMChain.

Return type

Dict[str, Any]

plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Union[AgentAction, AgentFinish]

Given input, decided what to do.

Parameters
Returns

Action specifying what tool to use.

Return type

Union[AgentAction, AgentFinish]

return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinish

Return response when agent has been stopped due to max iterations.

Parameters
  • early_stopping_method (str) – Method to use for early stopping.

  • intermediate_steps (List[Tuple[AgentAction, str]]) – Steps the LLM has taken to date, along with observations.

  • **kwargs (Any) – User inputs.

Returns

Agent finish object.

Return type

AgentFinish

Raises

ValueError – If early_stopping_method is not in [‘force’, ‘generate’].

save(file_path: Union[Path, str]) None

Save the agent.

Parameters

file_path (Union[Path, str]) – Path to file to save the agent to.

Return type

None

Example: .. code-block:: python

# If working with agent executor agent.agent.save(file_path=”path/agent.yaml”)

tool_run_logging_kwargs() Dict

Return logging kwargs for tool run.

Return type

Dict

property llm_prefix: str

Prefix to append the LLM call with.

property observation_prefix: str

Prefix to append the observation with.

property return_values: List[str]

Return values of the agent.