Source code for langchain_community.vectorstores.xata

from __future__ import annotations

import time
from itertools import repeat
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

[docs]class XataVectorStore(VectorStore): """`Xata` vector store. It assumes you have a Xata database created with the right schema. See the guide at: """
[docs] def __init__( self, api_key: str, db_url: str, embedding: Embeddings, table_name: str, ) -> None: """Initialize with Xata client.""" try: from xata.client import XataClient except ImportError: raise ImportError( "Could not import xata python package. " "Please install it with `pip install xata`." ) self._client = XataClient(api_key=api_key, db_url=db_url) self._embedding: Embeddings = embedding self._table_name = table_name or "vectors"
@property def embeddings(self) -> Embeddings: return self._embedding
[docs] def add_vectors( self, vectors: List[List[float]], documents: List[Document], ids: Optional[List[str]] = None, ) -> List[str]: return self._add_vectors(vectors, documents, ids)
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: ids = ids docs = self._texts_to_documents(texts, metadatas) vectors = self._embedding.embed_documents(list(texts)) return self.add_vectors(vectors, docs, ids)
def _add_vectors( self, vectors: List[List[float]], documents: List[Document], ids: Optional[List[str]] = None, ) -> List[str]: """Add vectors to the Xata database.""" rows: List[Dict[str, Any]] = [] for idx, embedding in enumerate(vectors): row = { "content": documents[idx].page_content, "embedding": embedding, } if ids: row["id"] = ids[idx] for key, val in documents[idx].metadata.items(): if key not in ["id", "content", "embedding"]: row[key] = val rows.append(row) # XXX: I would have liked to use the BulkProcessor here, but it # doesn't return the IDs, which we need here. Manual chunking it is. chunk_size = 1000 id_list: List[str] = [] for i in range(0, len(rows), chunk_size): chunk = rows[i : i + chunk_size] r = self._client.records().bulk_insert(self._table_name, {"records": chunk}) if r.status_code != 200: raise Exception(f"Error adding vectors to Xata: {r.status_code} {r}") id_list.extend(r["recordIDs"]) return id_list @staticmethod def _texts_to_documents( texts: Iterable[str], metadatas: Optional[Iterable[Dict[Any, Any]]] = None, ) -> List[Document]: """Return list of Documents from list of texts and metadatas.""" if metadatas is None: metadatas = repeat({}) docs = [ Document(page_content=text, metadata=metadata) for text, metadata in zip(texts, metadatas) ] return docs
[docs] @classmethod def from_texts( cls: Type["XataVectorStore"], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, api_key: Optional[str] = None, db_url: Optional[str] = None, table_name: str = "vectors", ids: Optional[List[str]] = None, **kwargs: Any, ) -> "XataVectorStore": """Return VectorStore initialized from texts and embeddings.""" if not api_key or not db_url: raise ValueError("Xata api_key and db_url must be set.") embeddings = embedding.embed_documents(texts) ids = None # Xata will generate them for us docs = cls._texts_to_documents(texts, metadatas) vector_db = cls( api_key=api_key, db_url=db_url, embedding=embedding, table_name=table_name, ) vector_db._add_vectors(embeddings, docs, ids) return vector_db
[docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[dict]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ embedding = self._embedding.embed_query(query) payload = { "queryVector": embedding, "column": "embedding", "size": k, } if filter: payload["filter"] = filter r =, payload=payload) if r.status_code != 200: raise Exception(f"Error running similarity search: {r.status_code} {r}") hits = r["records"] docs_and_scores = [ ( Document( page_content=hit["content"], metadata=self._extractMetadata(hit), ), hit["xata"]["score"], ) for hit in hits ] return docs_and_scores
def _extractMetadata(self, record: dict) -> dict: """Extract metadata from a record. Filters out known columns.""" metadata = {} for key, val in record.items(): if key not in ["id", "content", "embedding", "xata"]: metadata[key] = val return metadata
[docs] def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, **kwargs: Any, ) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. delete_all: Delete all records in the table. """ if delete_all: self._delete_all() self.wait_for_indexing(ndocs=0) elif ids is not None: chunk_size = 500 for i in range(0, len(ids), chunk_size): chunk = ids[i : i + chunk_size] operations = [ {"delete": {"table": self._table_name, "id": id}} for id in chunk ] self._client.records().transaction(payload={"operations": operations}) else: raise ValueError("Either ids or delete_all must be set.")
def _delete_all(self) -> None: """Delete all records in the table.""" while True: r =, payload={"columns": ["id"]}) if r.status_code != 200: raise Exception(f"Error running query: {r.status_code} {r}") ids = [rec["id"] for rec in r["records"]] if len(ids) == 0: break operations = [ {"delete": {"table": self._table_name, "id": id}} for id in ids ] self._client.records().transaction(payload={"operations": operations})
[docs] def wait_for_indexing(self, timeout: float = 5, ndocs: int = 1) -> None: """Wait for the search index to contain a certain number of documents. Useful in tests. """ start = time.time() while True: r = self._table_name, payload={"query": "", "page": {"size": 0}} ) if r.status_code != 200: raise Exception(f"Error running search: {r.status_code} {r}") if r["totalCount"] == ndocs: break if time.time() - start > timeout: raise Exception("Timed out waiting for indexing to complete.") time.sleep(0.5)