Source code for langchain_community.llms.clarifai

import logging
from typing import Any, Dict, List, Optional

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import Extra, Field, root_validator

from langchain_community.llms.utils import enforce_stop_tokens

logger = logging.getLogger(__name__)


EXAMPLE_URL = "https://clarifai.com/openai/chat-completion/models/GPT-4"


[docs]class Clarifai(LLM): """Clarifai large language models. To use, you should have an account on the Clarifai platform, the ``clarifai`` python package installed, and the environment variable ``CLARIFAI_PAT`` set with your PAT key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.llms import Clarifai clarifai_llm = Clarifai(user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID) (or) clarifai_llm = Clarifai(model_url=EXAMPLE_URL) """ model_url: Optional[str] = None """Model url to use.""" model_id: Optional[str] = None """Model id to use.""" model_version_id: Optional[str] = None """Model version id to use.""" app_id: Optional[str] = None """Clarifai application id to use.""" user_id: Optional[str] = None """Clarifai user id to use.""" pat: Optional[str] = Field(default=None, exclude=True) #: :meta private: """Clarifai personal access token to use.""" token: Optional[str] = Field(default=None, exclude=True) #: :meta private: """Clarifai session token to use.""" model: Any = Field(default=None, exclude=True) #: :meta private: api_base: str = "https://api.clarifai.com" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that we have all required info to access Clarifai platform and python package exists in environment.""" try: from clarifai.client.model import Model except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) user_id = values.get("user_id") app_id = values.get("app_id") model_id = values.get("model_id") model_version_id = values.get("model_version_id") model_url = values.get("model_url") api_base = values.get("api_base") pat = values.get("pat") token = values.get("token") values["model"] = Model( url=model_url, app_id=app_id, user_id=user_id, model_version=dict(id=model_version_id), pat=pat, token=token, model_id=model_id, base_url=api_base, ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Clarifai API.""" return {} @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { **{ "model_url": self.model_url, "user_id": self.user_id, "app_id": self.app_id, "model_id": self.model_id, } } @property def _llm_type(self) -> str: """Return type of llm.""" return "clarifai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, inference_params: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> str: """Call out to Clarfai's PostModelOutputs endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = clarifai_llm.invoke("Tell me a joke.") """ try: (inference_params := {}) if inference_params is None else inference_params predict_response = self.model.predict_by_bytes( bytes(prompt, "utf-8"), input_type="text", inference_params=inference_params, ) text = predict_response.outputs[0].data.text.raw if stop is not None: text = enforce_stop_tokens(text, stop) except Exception as e: logger.error(f"Predict failed, exception: {e}") return text def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, inference_params: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> LLMResult: """Run the LLM on the given prompt and input.""" # TODO: add caching here. try: from clarifai.client.input import Inputs except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) generations = [] batch_size = 32 input_obj = Inputs.from_auth_helper(self.model.auth_helper) try: for i in range(0, len(prompts), batch_size): batch = prompts[i : i + batch_size] input_batch = [ input_obj.get_text_input(input_id=str(id), raw_text=inp) for id, inp in enumerate(batch) ] ( inference_params := {} ) if inference_params is None else inference_params predict_response = self.model.predict( inputs=input_batch, inference_params=inference_params ) for output in predict_response.outputs: if stop is not None: text = enforce_stop_tokens(output.data.text.raw, stop) else: text = output.data.text.raw generations.append([Generation(text=text)]) except Exception as e: logger.error(f"Predict failed, exception: {e}") return LLMResult(generations=generations)