Source code for langchain_cohere.cohere_agent

import json
from typing import Any, Callable, Dict, List, Sequence, Tuple, Type, Union

from cohere.types import (
    Tool,
    ToolCall,
    ToolParameterDefinitionsValue,
    ToolResult,
)
from langchain_core._api.deprecation import deprecated
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.outputs import Generation
from langchain_core.outputs.chat_generation import ChatGeneration
from langchain_core.prompts.chat import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import Runnable, RunnablePassthrough
from langchain_core.runnables.base import RunnableLambda
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import (
    convert_to_openai_function,
)

from langchain_cohere.utils import (
    JSON_TO_PYTHON_TYPES,
    _remove_signature_from_tool_description,
)


[docs]@deprecated( since="0.1.7", removal="", alternative="""Use the 'tool calling agent' or 'Langgraph agent' with the ChatCohere class instead. See https://docs.cohere.com/docs/cohere-and-langchain for more information.""", ) def create_cohere_tools_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, **kwargs: Any, ) -> Runnable: def llm_with_tools(input_: Dict) -> Runnable: tool_results = ( input_["tool_results"] if len(input_["tool_results"]) > 0 else None ) tools_ = input_["tools"] if len(input_["tools"]) > 0 else None return RunnableLambda(lambda x: x["input"]) | llm.bind( tools=tools_, tool_results=tool_results, **kwargs ) agent = ( RunnablePassthrough.assign( # Intermediate steps are in tool results. # Edit below to change the prompt parameters. input=lambda x: prompt.format_messages(**x, agent_scratchpad=[]), tools=lambda x: _format_to_cohere_tools(tools), tool_results=lambda x: _format_to_cohere_tools_messages( x["intermediate_steps"] ), ) | llm_with_tools | _CohereToolsAgentOutputParser() ) return agent
def _format_to_cohere_tools( tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], ) -> List[Dict[str, Any]]: return [_convert_to_cohere_tool(tool) for tool in tools] def _format_to_cohere_tools_messages( intermediate_steps: Sequence[Tuple[AgentAction, str]], ) -> List[Dict[str, Any]]: """Convert (AgentAction, tool output) tuples into tool messages.""" if len(intermediate_steps) == 0: return [] tool_results = [] for agent_action, observation in intermediate_steps: # agent_action.tool_input can be a dict, serialised dict, or string. # Cohere API only accepts a dict. tool_call_parameters: Dict[str, Any] if isinstance(agent_action.tool_input, dict): # tool_input is a dict, use as-is. tool_call_parameters = agent_action.tool_input else: try: # tool_input is serialised dict. tool_call_parameters = json.loads(agent_action.tool_input) if not isinstance(tool_call_parameters, dict): raise ValueError() except ValueError: # tool_input is a string, last ditch attempt at having something useful. tool_call_parameters = {"input": agent_action.tool_input} tool_results.append( ToolResult( call=ToolCall( name=agent_action.tool, parameters=tool_call_parameters, ), outputs=[{"answer": observation}], ).dict() ) return tool_results def _convert_to_cohere_tool( tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], ) -> Dict[str, Any]: """ Convert a BaseTool instance, JSON schema dict, or BaseModel type to a Cohere tool. """ if isinstance(tool, BaseTool): return Tool( name=tool.name, description=_remove_signature_from_tool_description( tool.name, tool.description ), parameter_definitions={ param_name: ToolParameterDefinitionsValue( description=param_definition.get("description") if "description" in param_definition else "", type=JSON_TO_PYTHON_TYPES.get( param_definition.get("type"), param_definition.get("type") ), required="default" not in param_definition, ) for param_name, param_definition in tool.args.items() }, ).dict() elif isinstance(tool, dict): if not all(k in tool for k in ("title", "description", "properties")): raise ValueError( "Unsupported dict type. Tool must be passed in as a BaseTool instance, JSON schema dict, or BaseModel type." # noqa: E501 ) return Tool( name=tool.get("title"), description=tool.get("description"), parameter_definitions={ param_name: ToolParameterDefinitionsValue( description=param_definition.get("description"), type=JSON_TO_PYTHON_TYPES.get( param_definition.get("type"), param_definition.get("type") ), required="default" not in param_definition, ) for param_name, param_definition in tool.get("properties", {}).items() }, ).dict() elif (isinstance(tool, type) and issubclass(tool, BaseModel)) or callable(tool): as_json_schema_function = convert_to_openai_function(tool) parameters = as_json_schema_function.get("parameters", {}) properties = parameters.get("properties", {}) return Tool( name=as_json_schema_function.get("name"), description=as_json_schema_function.get( # The Cohere API requires the description field. "description", as_json_schema_function.get("name"), ), parameter_definitions={ param_name: ToolParameterDefinitionsValue( description=param_definition.get("description"), type=JSON_TO_PYTHON_TYPES.get( param_definition.get("type"), param_definition.get("type") ), required=param_name in parameters.get("required", []), ) for param_name, param_definition in properties.items() }, ).dict() else: raise ValueError( f"Unsupported tool type {type(tool)}. Tool must be passed in as a BaseTool instance, JSON schema dict, or BaseModel type." # noqa: E501 ) class _CohereToolsAgentOutputParser( BaseOutputParser[Union[List[AgentAction], AgentFinish]] ): """Parses a message into agent actions/finish.""" def parse_result( self, result: List[Generation], *, partial: bool = False ) -> Union[List[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): raise ValueError(f"Expected ChatGeneration, got {type(result)}") if "tool_calls" in result[0].message.additional_kwargs: actions = [] for tool in result[0].message.additional_kwargs["tool_calls"]: function = tool.get("function", {}) actions.append( AgentAction( tool=function.get("name"), tool_input=function.get("arguments"), log=function.get("name"), ) ) return actions else: return AgentFinish( return_values={ "text": result[0].message.content, "additional_info": result[0].message.additional_kwargs, }, log="", ) def parse(self, text: str) -> Union[List[AgentAction], AgentFinish]: raise ValueError("Can only parse messages")